Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 6718-6729, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38517289

RESUMO

Interpolymer association in aqueous solutions is essential for many industrial processes, new materials design, and the biochemistry of life. However, our understanding of the association mechanism is limited. Classical theories do not provide molecular details, creating a need for detailed mechanistic insights. This work consolidates previous literature with complementary isothermal titration calorimetry (ITC) measurements and molecular dynamics (MD) simulations to investigate molecular mechanisms to provide such insights. The large body of ITC data shows that intermolecular bonds, such as ionic or hydrogen bonds, cannot drive association. Instead, polymer association is entropy-driven due to the reorganization of water and ions. We propose a unifying entropy-driven association mechanism by generalizing previously suggested polyion association principles to include nonionic polymers, here termed polydipoles. In this mechanism, complementary charge densities of the polymers are the common denominators of association, for both polyions and polydipoles. The association of the polymers results mainly from two processes: charge exchange and amphiphilic association. MD simulations indicate that the amphiphilic assembly alone is enough for the initial association. Our proposed mechanism is a step toward a molecular understanding of the formation of complexes between synthetic and biological polymers under ambient or biological conditions.

2.
Anal Chem ; 93(42): 14187-14195, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34648274

RESUMO

Nucleic acid amplification tests (NAATs) are very sensitive and specific methods, but they mainly rely on centralized laboratories and therefore are not suitable for point-of-care testing. Here, we present a 3D microfluidic paper-based electrochemical NAAT. These devices use off-the-shelf gold plasma-coated threads to integrate electroanalytical readouts using ex situ self-assembled monolayer formation on the threads prior to assembling into the paper device. They further include a sandwich hybridization assay with sample incubation, rinsing, and detection steps all integrated using movable stacks of filter papers to allow time-sequenced reactions. The devices use glass fiber substrates for storing recombinase polymerase amplification reagents and conducting the isothermal amplification. We used the paper-based device for the detection of the toxic microalgae Ostreopsis cf. ovata. The NAAT, completed in 95 min, attained a limit of detection of 0.06 pM target synthetic DNA and was able to detect 1 ng/µL O. cf. ovata genomic DNA with negligible cross-reactivity from a closely related microalgae species. We think that the integration of thread electrodes within paper-based devices paves the way for digital one-time use NAATs and numerous other advanced electroanalytical paper- or textile-based devices.


Assuntos
Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , DNA/genética , Eletrodos , Ouro
3.
Small ; 17(32): e2100954, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34212496

RESUMO

Polyethylene oxide (PEO) is one of the most widely used polymeric ion conductors which has the potential for a wide range of applications in energy storage. The enhancement of ionic conductivity of PEO-based electrolytes is generally achieved by sacrificing the mechanical properties. Using layer-by-layer (LbL) self-assembly with a nanoscale precision, mechanically strong and self-healable PEO/polyacrylic acid composite thin films with a high Li+ conductivity of 2.3 ± 0.8 × 10-4 S cm-1 at 30 °C, and a strength of 3.7 MPa is prepared. These values make the LbL composite among the best recorded multifunctional solid electrolytes. The electrolyte thin film withstands at least 1000 cycles of striping/plating of Li at 0.05 mA cm-2 . It is further shown that the LbL thin films can be used as separators for Li-ion batteries to deliver a capacity of 116 mAh g-1 at 0.1 C in an all-LbL-assembled lithium iron phosphate/lithium titanate battery. Finally, it is demonstrated that the thin films can be used as ion-conducting substrates for flexible electrochemical devices, including micro supercapacitors and electrochemical transistors.

4.
Small ; 17(6): e2006434, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373094

RESUMO

Gaining control over the nanoscale assembly of different electrode components in energy storage systems can open the door for design and fabrication of new electrode and device architectures that are not currently feasible. This work presents aqueous layer-by-layer (LbL) self-assembly as a route towards design and fabrication of advanced lithium-ion batteries (LIBs) with unprecedented control over the structure of the electrode at the nanoscale, and with possibilities for various new designs of batteries beyond the conventional planar systems. LbL self-assembly is a greener fabrication route utilizing aqueous dispersions that allow various Li+ intercalating materials assembled in complex 3D porous substrates. The spatial precision of positioning of the electrode components, including ion intercalating phase and electron-conducting phase, is down to nanometer resolution. This capable approach makes a lithium titanate anode delivering a specific capacity of 167 mAh g-1 at 0.1C and having comparable performances to conventional slurry-cast electrodes at current densities up to 100C. It also enables high flexibility in the design and fabrication of the electrodes where various advanced multilayered nanostructures can be tailored for optimal electrode performance by choosing cationic polyelectrolytes with different molecular sizes. A full-cell LIB with excellent mechanical resilience is built on porous insulating foams.

5.
Langmuir ; 35(32): 10367-10373, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31322359

RESUMO

Layer-by-layer (LbL) assembly is a versatile tool for fabricating multilayers with tailorable nanostructures. LbL, however, generally relies on polyelectrolytes, which are mostly insulating and induce large interlayer distances. We demonstrate a method in which we replace polyelectrolytes with the smallest unit capable of LbL self-assembly: a molecule with multiple positive charges, tris(3-aminopropyl)amine (TAPA), to fabricate LbL films with negatively charged single-walled carbon nanotubes (CNTs). TAPA introduces less defects during the LbL build-up and results in more efficient assembly of films with denser micromorphology. Twenty bilayers of TAPA/CNT showed a low sheet resistance of 11 kΩ, a high transparency of 91% at 500 nm, and a high electronic conductivity of 1100 S/m on planar substrates. We also fabricated LbL films on porous foams with a conductivity of 69 mS/m and used them as electrodes for supercapacitors with a high specific capacitance of 43 F/g at a discharging current density of 1 A/g.

6.
Small ; 14(48): e1803313, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30328292

RESUMO

Paper is emerging as a promising flexible, high surface-area substrate for various new applications such as printed electronics, energy storage, and paper-based diagnostics. Many applications, however, require paper that reaches metallic conductivity levels, ideally at low cost. Here, an aqueous electroless copper-plating method is presented, which forms a conducting thin film of fused copper nanoparticles on the surface of the cellulose fibers. This paper can be used as a current collector for anodes of lithium-ion batteries. Owing to the porous structure and the large surface area of cellulose fibers, the copper-plated paper-based half-cell of the lithium-ion battery exhibits excellent rate performance and cycling stability, and even outperforms commercially available planar copper foil-based anode at ultra-high charge/discharge rates of 100 C and 200 C. This mechanically robust metallic-paper composite has promising applications as the current collector for light-weight, flexible, and foldable paper-based 3D Li-ion battery anodes.

7.
Nanoscale ; 16(6): 2883-2893, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38259225

RESUMO

The solid-state field-effect transistor, FET, and its theories were paramount in the discovery and studies of graphene. In the past two decades another transistor based on conducting polymers, called organic electrochemical transistor (ECT), has been developed and largely studied. The main difference between organic ECTs and FETs is the mode and extent of channel doping; while in FETs the channel only has surface doping through dipoles, the mixed ionic-electronic conductivity of the channel material in organic ECTs enables bulk electrochemical doping. As a result, organic ECTs maximize conductance modulation at the expense of speed. To date ECTs have been based on conducting polymers, but here we show that MXenes, a class of 2D materials beyond graphene, enable the realization of electrochemical transistors (ECTs). We show that the formulas for organic ECTs can be applied to these 2D ECTs and used to extract parameters like mobility. These MXene ECTs have high transconductance values but low on-off ratios. We further show that conductance switching data measured using ECT, in combination with other in situ-ex situ electrochemical measurements, is a powerful tool for correlating the change in conductance to that of the redox state, to our knowledge, this is the first report of this important correlation for MXene films. 2D ECTs can draw great inspiration and theoretical tools from the field of organic ECTs and have the potential to considerably extend the capabilities of transistors beyond those of conducting polymer ECTs, with added properties such as extreme heat resistance, tolerance for solvents, and higher conductivity for both electrons and ions than conducting polymers.

8.
Adv Mater ; 36(23): e2302624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431796

RESUMO

Diluting organic semiconductors with a host insulating polymer is used to increase the electronic mobility in organic electronic devices, such as thin film transistors, while considerably reducing material costs. In contrast to organic electronics, bioelectronic devices such as the organic electrochemical transistor (OECT) rely on both electronic and ionic mobility for efficient operation, making it challenging to integrate hydrophobic polymers as the predominant blend component. This work shows that diluting the n-type conjugated polymer p(N-T) with high molecular weight polystyrene (10 KDa) leads to OECTs with over three times better mobility-volumetric capacitance product (µC*) with respect to the pristine p(N-T) (from 4.3 to 13.4 F V-1 cm-1 s-1) while drastically decreasing the amount of conjugated polymer (six times less). This improvement in µC* is due to a dramatic increase in electronic mobility by two orders of magnitude, from 0.059 to 1.3 cm2 V-1 s-1 for p(N-T):Polystyrene 10 KDa 1:6. Moreover, devices made with this polymer blend show better stability, retaining 77% of the initial drain current after 60 minutes operation in contrast to 12% for pristine p(N-T). These results open a new generation of low-cost organic mixed ionic-electronic conductors where the bulk of the film is made by a commodity polymer.

9.
Adv Sci (Weinh) ; : e2307042, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225700

RESUMO

Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.

10.
Adv Mater ; 35(45): e2303255, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37451686

RESUMO

The unique properties of hydrogels enable the design of life-like soft intelligent systems. However, stimuli-responsive hydrogels still suffer from limited actuation control. Direct electronic control of electronically conductive hydrogels can solve this challenge and allow direct integration with modern electronic systems. An electrochemically controlled nanowire composite hydrogel with high in-plane conductivity that stimulates a uniaxial electrochemical osmotic expansion is demonstrated. This materials system allows precisely controlled shape-morphing at only -1 V, where capacitive charging of the hydrogel bulk leads to a large uniaxial expansion of up to 300%, caused by the ingress of ≈700 water molecules per electron-ion pair. The material retains its state when turned off, which is ideal for electrotunable membranes as the inherent coupling between the expansion and mesoporosity enables electronic control of permeability for adaptive separation, fractionation, and distribution. Used as electrochemical osmotic hydrogel actuators, they achieve an electroactive pressure of up to 0.7 MPa (1.4 MPa vs dry) and a work density of ≈150 kJ m-3 (2 MJ m-3  vs dry). This new materials system paves the way to integrate actuation, sensing, and controlled permeation into advanced soft intelligent systems.

11.
Adv Mater ; 35(45): e2301163, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491007

RESUMO

A multifunctional soft material with high ionic and electrical conductivity, combined with high mechanical properties and the ability to change shape can enable bioinspired responsive devices and systems. The incorporation of all these characteristics in a single material is very challenging, as the improvement of one property tends to reduce other properties. Here, a nanocomposite film based on charged, high-aspect-ratio 1D flexible nanocellulose fibrils, and 2D Ti3 C2 Tx MXene is presented. The self-assembly process results in a stratified structure with the nanoparticles aligned in-plane, providing high ionotronic conductivity and mechanical strength, as well as large water uptake. In hydrogel form with 20 wt% liquid, the electrical conductivity is over 200 S cm-1 and the in-plane tensile strength is close to 100 MPa. This multifunctional performance results from the uniquely layered composite structure at nano- and mesoscales. A new type of electrical soft actuator is assembled where voltage as low as ±1 V resulted in osmotic effects and giant reversible out-of-plane swelling, reaching 85% strain.

12.
Biosens Bioelectron ; 194: 113604, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34488171

RESUMO

Wearable sensors are a fast growing and exciting research area, the success of smart watches are a great example of the utility and demand for wearable sensing systems. The current state of the art routinely uses expensive and bulky equipment designed for long term use. There is a need for cheap and disposable wearable sensors to make single use measurements, primarily in the area of biomarker detection. Herein we report the ability to make cheap (0.22 USD/sensor), disposable, wearable sensors by stitching conductive gold coated threads into fabrics. These threads are easily functionalised with thiolate self-assembled monolayers which can be designed for the detection of a broad range of different biomarkers. This all textile sensing platform is ideally suited to be scaled up and has the added advantage of being stretchable with insignificant effect on the electrochemistry of the devices. As a proof of principle, the devices have been functionalised with a continuous glucose sensing system which was able to detect glucose in human sweat across the clinically relevant range (0.1-0.6 mM). The sensors have a sensitivity of 126 ± 14 nA/mM of glucose and a limit of detection of 301 ± 2 nM. This makes them ideally suited for biomarker detection in point-of-care sensing applications.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Ouro , Humanos , Suor , Têxteis
13.
ACS Appl Mater Interfaces ; 13(36): 43301-43313, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474558

RESUMO

Dispersion of graphene and related materials in water is needed to enable sustainable processing of these 2D materials. In this work, we demonstrate the capability of branched polyethylenimine (BPEI) and polyacrylic acid (PAA) to stabilize reduced graphite oxide (rGO) dispersions in water. Atomic force microscopy colloidal probe measurements were carried out to investigate the interaction mechanisms between rGO and the polyelectrolytes (PEs). Our results show that for positive PEs, the interaction appears electrostatic, originating from the weak negative charge of graphene in water. For negative PEs, however, van der Waals forces may result in the formation of a PE shell on rGO. The PE-stabilized rGO dispersions were then used for the preparation of coatings to enhance gas barrier properties of polyethylene terephthalate films using the layer-by-layer self-assembly. Ten bilayers of rGOBPEI/rGOPAA resulted in coatings with excellent barrier properties as demonstrated by oxygen transmission rates below detection limits [<0.005 cm3/(m2 day atm)]. The observed excellent performance is ascribed to both the high density of the deposited coating and its efficient stratification. These results can enable the design of highly efficient gas barrier solutions for demanding applications, including oxygen-sensitive pharmaceutical products or flexible electronic devices.

14.
Adv Healthc Mater ; 10(11): e2100034, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33930257

RESUMO

Fiber-based biosensors enable a new approach in analytical diagnostic devices. The majority of textile-based biosensors, however, rely on colorimetric detection. Here a woven biosensor that integrates microfluidics structures in combination with an electroanalytical readout based on a thiol-self-assembled monolayer (SAM) for Nucleic Acid Amplification Testing, NAATs is shown. Two types of fiber-based electrodes are systematically characterized: pure gold microwires (bond wire) and off-the-shelf plasma gold-coated polyester multifilament threads to evaluate their potential to form SAMs on their surface and their electrochemical performance in woven textile. A woven electrochemical DNA (E-DNA) sensor using a SAM-based stem-loop probe-modified gold microwire is fabricated. These sensors can specifically detect unpurified, isothermally amplified genomic DNA of Staphylococcus epidermidis (10 copies/µL) by recombinase polymerase amplification (RPA). This work demonstrates that textile-based biosensors have the potential for integrating and being employed as automated, sample-to-answer analytical devices for point-of-care (POC) diagnostics.


Assuntos
Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , DNA , Eletrodos , Ouro
15.
Macromol Biosci ; 20(11): e2000150, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32686256

RESUMO

Textile based biosensors have garnered much interest in recent years. Devices woven out of yarns have the ability to be incorporated into clothing and bandages. Most woven devices reported in the literature require yarns that are not available on an industrial scale or that require modifications which are not possible in large scale manufacturing. In this work, commercially produced yarns are taken without any modification or cleaning, and developed woven textile diagnostic devices out of them. The yarn properties that are important to their function within the device have been characterised and discussed. The wicking ability and analyte retention of Coolmax yarns, developed to wick sweat in mass produced sportswear, are determined. The electrochemistry and functionalizability of Au coated multifilament yarns are investigated with no cleaning or treatment and are found to have as good a thiolate self-assembled monolayer (SAM) coverage as cleaned Au disk electrodes. The feasibility of using these yarns is established off the shelf, with no cleaning, to make woven capillary force driven microfluidic devices and three electrode sensing devices. A proof of principle three electrode system capable of detecting clinically relevant concentrations of glucose in human sweat is reported.


Assuntos
Microtecnologia , Têxteis , Eletroquímica , Eletrodos , Ouro/química , Humanos , Platina/química , Prata , Compostos de Prata/química
16.
ACS Omega ; 5(21): 12103-12109, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548389

RESUMO

Nucleic acid tests integrated into digital point-of-care (POC) diagnostic systems have great potential for the future of health care. However, current methods of DNA amplification and detection require bulky and expensive equipment, many steps, and long process times, which complicate their integration into POC devices. We have combined an isothermal DNA amplification method, recombinase polymerase amplification, with an electrochemical stem-loop (S-L) probe DNA detection technique. By combining these methods, we have created a system that is able to specifically amplify and detect as few as 10 copies/µL Staphylococcus epidermidis DNA with a total time to result of 70-75 min.

17.
Nanoscale ; 11(8): 3514-3520, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30742178

RESUMO

Ion-induced assemblies of highly anisotropic nanoparticles can be explained by a model consisting of ion-ion correlation and specific ion effects: dispersion interactions, metal-ligand complexes, and local acidic environments. Films of cellulose nanofibrils and montmorillonite clay were treated with different ions, and their subsequent equilibrium swelling in water was related to important parameters of the model in order to investigate the relative importance of the mechanisms. Ion-ion correlation was shown to be the fundamental attraction, supplemented by dispersion interaction for polarizable ions such as Ca2+ and Ba2+, or metal-ligand complexes for ions such as Cu2+, Al3+ and Fe3+. Ions that form strong complexes induce local acidic environments that also contribute to the assembly. These findings are summarized in a comprehensive semi-quantitative model and are important for the design of nanomaterials and for understanding biological systems where specific ions are involved.

18.
Adv Mater ; 28(22): 4556-62, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26836440

RESUMO

Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA