Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 68(2): 246-253, 1986 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28310135

RESUMO

A steady state, radiotracer technique was used to study the original source of the carbon in zooplankton. The experiments were started in filtered lake water with added inorganic radiocarbon. At the beginning of the experiments, a proportionally insignificant volume of unfiltered water was introduced into the culture, together with some ovigerous zooplankton individuals. Since the radioactivity: carbon ratio in the dissolved inorganic carbon was kept constant, a similar ratio would be expected to develop in the autotrophic phytoplankton. The same ratio would then be expected to develop in the zooplankton, if its sole carbon source was autotrophic phytoplankton.According to the results of this approach dissolved organic matter seems to be an important food resource for zooplankton, particularly in highly humic lakes. This conclusion was confirmed by the finding that zooplankton from these lakes was able to grow and reproduce in experiments started with filtered lake water and conducted in complete darkness.The development of algae was followed over the course of one experiment in highly humic water. The same micro-flagellates reproduced equally well in both light and darkness, which indicates the importance of heterotrophic metabolism in their nutrition. Although there are no direct observations about the food of zooplankton in our experiments, it appears likely that heterotrophic flagellates play an important role as a food of zooplankton in humic waters.The importance of dissolved organic matter in the nutrition of aquatic organisms would seem to be much greater than has generally been recognized. Consequently the prevailing concepts of the structure and functioning of planktonic ecosystem should be thoroughly re-evaluated.

2.
Chemosphere ; 52(3): 609-21, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12738299

RESUMO

We have examined how some major catchment disturbances may affect the aquatic greenhouse gas fluxes in the boreal zone, using gas flux data from studies made in 1994-1999 in the pelagic regions of seven lakes and two reservoirs in Finland. The highest pelagic seasonal average methane (CH(4)) emissions were up to 12 mmol x m(-2) x d(-1) from eutrophied lakes with agricultural catchments. Nutrient loading increases autochthonous primary production in lakes, promoting oxygen consumption and anaerobic decomposition in the sediments and this can lead to increased CH(4) release from lakes to the atmosphere. The carbon dioxide (CO(2)) fluxes were higher from reservoirs and lakes whose catchment areas were rich in peatlands or managed forests, and from eutrophied lakes in comparison to oligotrophic and mesotrophic sites. However, all these sites were net sources of CO(2) to the atmosphere. The pelagic CH(4) emissions were generally lower than those from the littoral zone. The fluxes of nitrous oxide (N(2)O) were negligible in the pelagic regions, apparently due to low nitrate inputs and/or low nitrification activity. However, the littoral zone, acting as a buffer for leached nitrogen, did release N(2)O. Anthropogenic disturbances of boreal lakes, such as increasing eutrophication, can change the aquatic greenhouse gas balance, but also the gas exchange in the littoral zone should be included in any assessment of the overall effect. It seems that autochthonous and allochthonous carbon sources, which contribute to the CH(4) and CO(2) production in lakes, also have importance in the greenhouse gas emissions from reservoirs.


Assuntos
Dióxido de Carbono/análise , Água Doce/análise , Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Atmosfera/análise , Atmosfera/química , Monitoramento Ambiental/métodos , Eutrofização , Finlândia , Água Doce/química , Geografia , Estações do Ano , Temperatura , Fatores de Tempo , Movimentos da Água , Poluentes Químicos da Água/análise
3.
J Environ Qual ; 31(6): 1868-74, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12469836

RESUMO

Little information is available concerning the contamination risk caused by forest seedling nurseries to local surface and ground waters compared with agricultural and horticultural production. Leaching of nitrogen (N) and phosphorus (P) through peat growing medium in containers and nutrient uptake of seedlings were monitored in production of silver birch (Betula pendula Roth), Norway spruce [Picea abies (L.) Karst], and Scots pine (Pinus sylvestris L.) seedlings. About half of the applied nutrients (total amount applied = 149 to 260 kg N ha(-1) and 60 to 108 kg P ha(-1)) was premixed into the peat medium, as is usual in Finnish nursery practice, and the other half was applied to seedlings in liquid form with mobile booms. Depending on tree species, 11 to 19% of the applied N was recovered in leachates and 15 to 63% in seedlings. The undiscovered proportion varied from 19 to 71%. The amounts of leached N were 19 to 41 kg ha(-1). Only 5 to 31% of the applied P was recovered in seedlings; 16 to 64% (11 to 56 kg ha(-1)) was found in leachates. Total N and P load to the environment may increase substantially if nutrients applied in liquid fertilization outside container trays are included. Consequently, it is important to determine the sources of nutrient load in container seedling production to mitigate the risk of environment contamination.


Assuntos
Agricultura Florestal , Nitrogênio/análise , Fósforo/análise , Poluentes do Solo/análise , Poluentes da Água/análise , Betula , Fertilizantes , Picea , Pinus , Medição de Risco , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA