Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 7684-7706, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859895

RESUMO

Point defects with different species are concentrated on most mechanically machined fused silica optical surfaces with surface defects, which would sharply decrease the laser damage resistance under intense laser irradiation. Various point defects have distinct roles in affecting the laser damage resistance. Especially, the proportions of various point defects have not been identified, posing the challenge in relating the intrinsic quantitative relationship among various point defects. To fully reveal the comprehensive effect of various point defects, it is necessary to systematically explore the origins, evolution laws and especially the quantitative relationship among point defects. Herein, seven types of point defects are determined. The unbonded electrons in point defects are found to tend to be ionized to induce laser damage and there is a definite quantitative relationship between the proportions of oxygen-deficient point defects and that of peroxide point defects. The conclusions are further verified based on the photoluminescence (PL) emission spectra and the properties (e.g., reaction rule and structural feature) of the point defects. On basis of the fitted Gaussian components and electronic-transition theory, the quantitative relationship between PL and the proportions of various point defects is constructed for the first time. E'-Center accounts for the highest proportion among them. This work is beneficial for fully revealing the comprehensive action mechanisms of various point defects and providing new insights in elucidating the defect-induced laser damage mechanisms of optical components under intense laser irradiation from the atomic scale.

2.
Nanoscale ; 15(45): 18250-18264, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37800341

RESUMO

Sub-bandgap defect energy levels (SDELs) introduced by the point defects located in surface defect areas are considered the main factors in decreasing laser-induced damage thresholds (LIDTs). The suppression of SDELs could greatly increase LIDTs. However, no available method could detect SDELs, limiting the characterization and suppression of SDELs. Herein, a self-designed photo-luminescence detection system is developed to explore the weak transient-steady photo-luminescence properties of machined surfaces. Based on the excitation laser wavelength dependence of photo-luminescence properties, a sub-bandgap energy-level structure (SELS) containing SDELs is unveiled for the first time. Based on the developed mathematical model for predicting LIDTs, the feasibility of the detection method was verified. In summary, this work provides a novel approach to characterize SDELs on machined surfaces. This work could construct electronic structures and explore the transition behaviors of electrons, which is vital to laser-induced damage. Besides, this work could predict the LIDTs of the machined surfaces based on their PL properties, which provides convenience for evaluating the LIDTs of various optical elements in industrial production. Moreover, this work provides a convenient method for raising the LIDTs of various optical elements through monitoring and suppressing the SDELs on machined surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA