Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35886087

RESUMO

Iron tailings used as soil substitute materials to construct reclaimed farmland soil can effectively realize the large-scale resource utilization of iron tailings and reduce environmental risks. It is vital to understand the mechanisms affecting reclaimed soil quality and determine the appropriate pattern for reclamation with iron tailings. Thus, a soil quality index (SQI) was developed to evaluate the soil quality of reclaimed farmland with iron tailings in a semi-arid region. Soil samples were collected from two reclamation measures (20 cm subsoil + 20 cm iron tailings + 30 cm topsoil and 20 cm subsoil + 20 cm iron tailings + 50 cm topsoil) with reclamation years of 3 (R3), 5 (R5), and 10 (R10) at three soil depths (0-10, 10-20, and 20-30 cm) to measure 13 soil physicochemical properties in western Liaoning, China. Adjacent normal farmland (NF) acted as a reference. Results indicated that iron tailings were suitable for constructing the soil profile configuration of reclaimed farmland. SQI of reclaimed soil increased with the reclamation year, but it has not reached the NF level after 3 years, while it was better than NF after 5 years. The nutrient content of reclaimed soil increased with the reclamation year, but it still did not reach the NF level after 10 years. SQI of R10 (with 50 cm topsoil) was also better than NF but slightly lower than R5 (with 30 cm topsoil). For the semi-arid region with sticky soil texture, the topsoil thickness of reclamation was not the thicker the better, and 30 cm topsoil covered on iron tailings in western Liaoning could achieve a better reclamation effect than 50 cm.


Assuntos
Poluentes do Solo , Solo , China , Fazendas , Ferro , Solo/química , Poluentes do Solo/análise
2.
Sci Rep ; 12(1): 20205, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418371

RESUMO

With continuous population growth and farmland decrease, the food security is seriously threatened. Farmland reclamation has been used as a means of raising the agricultural productivity and improving the ecological environment. However, the lack of reclaimed soil represents a serious problem. To verify the feasibility and effect of using large amounts of iron tailings to construct farmland, ten treatments (T1-T10) were designed to represent different soil profiles of regional normal farmland and constructed profiles using iron tailings. All treatments involving an iron tailings layer below topsoil exhibited higher soil water contents. The field capacity under T3 (20-cm iron tailings layer below cinnamon soil (b)) was 19.20% higher than that under T7 (20-cm red clay layer below cinnamon soil (b)), and the field capacity under T5 (20-cm iron tailings layer below cinnamon soil (a)) was 2.26% higher than that under T9 (20-cm red clay layer below cinnamon soil (a)). The soil water contents under T3 and T5 were almost the same as those under T7 and T9, respectively. The water-holding capacity of the 30-cm iron tailings layer (T6) was better than that of the 20-cm iron tailings layer (T2). Additionally, none of the treatments caused salt injury to maize. The maize height and stem thickness under the treatments employing iron tailings layers below topsoil were significantly greater than those in normal farmland; the maize height and stem thickness under T3 were 136.82% and 32.02% greater, respectively, than those under T7, and the values under T5 were 9.13% and 9.56% greater, respectively, than those under T9. The maize yields matched or even surpassed those in normal farmland, namely, the maize yield under T5 was equal to that under T9, and the maize yield under T3 was 12.69% higher than that under T7. In general, the application of an iron tailings layer below topsoil to construct farmland is a feasible and environmentally friendly way to realize sustainable farmland utilization and is beneficial to soil quality and crop yield improvement. Collectively, these results provide insight into the efficient utilization of iron tailings and environmental protection.


Assuntos
Ferro , Solo , Fazendas , Argila , Zea mays , Água
3.
Natl Sci Rev ; 9(2): nwab120, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35145702

RESUMO

Widespread soil acidification due to atmospheric acid deposition and agricultural fertilization may greatly accelerate soil carbonate dissolution and CO2 release. However, to date, few studies have addressed these processes. Here, we use meta-analysis and nationwide-survey datasets to investigate changes in soil inorganic carbon (SIC) stocks in China. We observe an overall decrease in SIC stocks in topsoil (0-30 cm) (11.33 g C m-2 yr-1) from the 1980s to the 2010s. Total SIC stocks have decreased by ∼8.99 ± 2.24% (1.37 ± 0.37 Pg C). The average SIC losses across China (0.046 Pg C yr-1) and in cropland (0.016 Pg C yr-1) account for ∼17.6%-24.0% of the terrestrial C sink and 57.1% of the soil organic carbon sink in cropland, respectively. Nitrogen deposition and climate change have profound influences on SIC cycling. We estimate that ∼19.12%-19.47% of SIC stocks will be further lost by 2100. The consumption of SIC may offset a large portion of global efforts aimed at ecosystem carbon sequestration, which emphasizes the importance of achieving a better understanding of the indirect coupling mechanisms of nitrogen and carbon cycling and of effective countermeasures to minimize SIC loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA