Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36772249

RESUMO

Case reports indicate that magnets in smartphones could be a source of electromagnetic interference (EMI) for active implantable medical devices (AIMD), which could lead to device malfunction, compromising patient safety. Recognizing this challenge, we implemented a high-fidelity 3D magnetic field mapping (spatial resolution 1 mm) setup using a three-axis Hall probe and teslameter, controlled by a robot (COSI Measure). With this setup, we examined the stray magnetic field of an iPhone 13 Pro, iPhone 12, and MagSafe charger to identify sources of magnetic fields for the accurate risk assessment of potential interferences with AIMDs. Our measurements revealed that the stray fields of the annular array of magnets, the wide-angle camera, and the speaker of the smartphones exceeded the 1 mT limit defined by ISO 14117:2019. Our data-driven safety recommendation is that an iPhone 13 Pro should be kept at least 25 mm away from an AIMD to protect it from unwanted EMI interactions. Our study addresses safety concerns due to potential device-device interactions between smartphones and AIMDs and will help to define data-driven safety guidelines. We encourage vendors of electronic consumer products (ECP) to provide information on the magnetic fields of their products and advocate for the inclusion of smartphones in the risk assessment of EMI with AIMDs.


Assuntos
Desfibriladores Implantáveis , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Smartphone , Campos Magnéticos , Próteses e Implantes , Eletrônica
2.
NMR Biomed ; 33(5): e4274, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32078208

RESUMO

The objective of this study was the design, implementation, evaluation and application of a compact wideband self-grounded bow-tie (SGBT) radiofrequency (RF) antenna building block that supports anatomical proton (1 H) MRI, fluorine (19 F) MRI, MR thermometry and broadband thermal intervention integrated in a whole-body 7.0 T system. Design considerations and optimizations were conducted with numerical electromagnetic field (EMF) simulations to facilitate a broadband thermal intervention frequency of the RF antenna building block. RF transmission (B1+ ) field efficiency and specific absorption rate (SAR) were obtained in a phantom, and the thigh of human voxel models (Ella, Duke) for 1 H and 19 F MRI at 7.0 T. B1+ efficiency simulations were validated with actual flip-angle imaging measurements. The feasibility of thermal intervention was examined by temperature simulations (f = 300, 400 and 500 MHz) in a phantom. The RF heating intervention (Pin = 100 W, t = 120 seconds) was validated experimentally using the proton resonance shift method and fiberoptic probes for temperature monitoring. The applicability of the SGBT RF antenna building block for in vivo 1 H and 19 F MRI was demonstrated for the thigh and forearm of a healthy volunteer. The SGBT RF antenna building block facilitated 19 F and 1 H MRI at 7.0 T as well as broadband thermal intervention (234-561 MHz). For the thigh of the human voxel models, a B1+ efficiency ≥11.8 µT/√kW was achieved at a depth of 50 mm. Temperature simulations and heating experiments in a phantom demonstrated a temperature increase ΔT >7 K at a depth of 10 mm. The compact SGBT antenna building block provides technology for the design of integrated high-density RF applicators and for the study of the role of temperature in (patho-) physiological processes by adding a thermal intervention dimension to an MRI device (Thermal MR).


Assuntos
Imageamento por Ressonância Magnética , Termometria , Simulação por Computador , Campos Eletromagnéticos , Humanos , Imagens de Fantasmas , Prótons , Ondas de Rádio
3.
Magn Reson Med ; 80(5): 2246-2255, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29607551

RESUMO

PURPOSE: To study the role of temperature in biological systems, diagnostic contrasts and thermal therapies, RF pulses for MR spin excitation can be deliberately used to apply a thermal stimulus. This application requires dedicated transmit/receive (Tx/Rx) switches that support high peak powers for MRI and high average powers for RF heating. To meet this goal, we propose a high-performance Tx/Rx switch based on positive-intrinsic-negative diodes and quarter-wavelength (λ/4) stubs. METHODS: The λ/4 stubs in the proposed Tx/Rx switch design route the transmitted RF signal directly to the RF coil/antenna without passing through any electronic components (e.g., positive-intrinsic-negative diodes). Bench measurements, MRI, MR thermometry, and RF heating experiments were performed at f = 297 MHz (B0 = 7 T) to examine the characteristics and applicability of the switch. RESULTS: The proposed design provided an isolation of -35.7dB/-41.5dB during transmission/reception. The insertion loss was -0.41dB/-0.27dB during transmission/reception. The switch supports high peak (3.9 kW) and high average (120 W) RF powers for MRI and RF heating at f = 297 MHz. High-resolution MRI of the wrist yielded image quality competitive with that obtained with a conventional Tx/Rx switch. Radiofrequency heating in phantom monitored by MR thermometry demonstrated the switch applicability for thermal modulation. Upon these findings, thermally activated release of a model drug attached to thermoresponsive polymers was demonstrated. CONCLUSION: The high-power Tx/Rx switch enables thermal MR applications at 7 T, contributing to the study of the role of temperature in biological systems and diseases. All design files of the switch will be made available open source at www.opensourceimaging.org.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Termometria/instrumentação , Desenho de Equipamento , Temperatura Alta , Humanos , Imagens de Fantasmas , Ondas de Rádio , Razão Sinal-Ruído , Punho/diagnóstico por imagem
4.
Heart Rhythm ; 19(3): 372-380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34767986

RESUMO

BACKGROUND: Recent case reports and small studies have reported activation of the magnet-sensitive switches in cardiovascular implantable electronic devices (CIEDs) by the new iPhone 12 series, initiating asynchronous pacing in pacemakers and suspension of antitachycardia therapies in implantable cardioverter-defibrillators (ICDs). OBJECTIVE: The purpose of this prospective single-center observational study was to quantify the risk of magnetic field interactions of the iPhone 12 with CIEDs. METHODS: A representative model of each CIED series from all manufacturers was tested ex vivo. Incidence and minimum distance necessary for magnet mode triggering were analyzed in 164 CIED patients with either the front or the back of the phone facing the device. The magnetic field of the iPhone 12 was analyzed using a 3-axis Hall probe. RESULTS: Ex vivo, magnetic interference occurred in 84.6% with the back compared to 46.2% with the front of the iPhone 12 facing the CIED. In vivo, activation of the magnet-sensitive switch occurred in 30 CIED patients (18.3%; 21 pacemaker, 9 ICD) when the iPhone 12 was placed in close proximity over the CIED pocket and the back of the phone was facing the skin. Multiple binary logistic regression analysis identified implantation depth (95% confidence interval 0.02-0.24) as an independent predictor of magnet-sensitive switch activation. CONCLUSION: Magnetic field interactions occur only in close proximity and with precise alignment of the iPhone 12 and CIEDs. It is important to advise CIED patients to not put the iPhone 12 directly on the skin above the CIED. Further recommendations are not necessary.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Desfibriladores Implantáveis/efeitos adversos , Eletrônica , Humanos , Campos Magnéticos , Imãs , Marca-Passo Artificial/efeitos adversos , Estudos Prospectivos
5.
Cancers (Basel) ; 13(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670862

RESUMO

Glioblastoma multiforme (GBM) is the most lethal and common brain tumor. Combining hyperthermia with chemotherapy and/or radiotherapy improves the survival of GBM patients. Thermal magnetic resonance (ThermalMR) is a hyperthermia variant that exploits radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. The RF signals' power and phase need to be supervised to manage the formation of the energy focal point, accurate thermal dose control, and safety. Patient position during treatment also needs to be monitored to ensure the efficacy of the treatment and avoid damages to healthy tissue. This work reports on a multi-channel RF signal supervision module that is capable of monitoring and regulating RF signals and detecting patient motion. System characterization was performed for a broad range of frequencies. Monte-Carlo simulations were performed to examine the impact of power and phase errors on hyperthermia performance. The supervision module's utility was demonstrated in characterizing RF power amplifiers and being a key part of a feedback control loop regulating RF signals in heating experiments. Electromagnetic field simulations were conducted to calculate the impact of patient displacement during treatment. The supervision module was experimentally tested for detecting patient motion to a submillimeter level. To conclude, this work presents a cost-effective RF supervision module that is a key component for a hyperthermia hardware system and forms a technological basis for future ThermalMR applications.

6.
Cancers (Basel) ; 12(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605322

RESUMO

Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SGPLL). The SGPLL was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SGPLL. Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SGPLL revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SGPLL and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SGPLL form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment.

7.
Sci Rep ; 7(1): 13452, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044156

RESUMO

Magnetic resonance imaging (MRI) is the mainstay of diagnostic imaging, a versatile instrument for clinical science and the subject of intense research interest. Advancing clinical science, research and technology of MRI requires high fidelity measurements in quantity, location and time of the given physical property. To meet this goal a broad spectrum of commercial measurement systems has been made available. These instruments frequently share in common that they are costly and typically employ closed proprietary hardware and software. This shortcoming makes any adjustment for a specified application difficult if not prohibitive. Recognizing this limitation this work presents COSI Measure, an automated open source measurement system that provides submillimetre resolution, robust configuration and a large working volume to support a versatile range of applications. The submillimetre fidelity and reproducibility/backlash performance were evaluated experimentally. Magnetic field mapping of a single ring Halbach magnet, a 3.0 T and a 7.0 T MR scanner as well as temperature mapping of a radio frequency coil were successfully conducted. Due to its open source nature and versatile construction, the system can be easily modified for other applications. In a resource limited research setting, COSI Measure makes efficient use of laboratory space, financial resources and collaborative efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA