Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 414(1-2): 201-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26906205

RESUMO

Telomere uncapping is thought to be the fundamental cause of replicative cellular senescence, but the cellular machineries mediating this process have not been fully understood. In the present study, we present the role of Sp1 transcription factor in the state of telomere uncapping using the TRF2(ΔBΔM)-induced senescence model in human diploid fibroblasts. We observed that the expression of Sp1 is down-regulated in the TRF2(ΔBΔM)-induced senescence, which was mediated by ATM and p38 MAPK. In addition, overexpression of Sp1 prevented the TRF2(ΔBΔM)-induced senescence. Among transcriptional targets of Sp1, expression levels of nuclear transport genes such as karyopherin α, Nup107, and Nup50 were down-regulated in the TRF2(ΔBΔM)-induced senescence, which was prevented by Sp1 overexpression. Moreover, inhibition of the nuclear transport by wheat germ agglutinin (an import inhibitor) and leptomycin B (an export inhibitor) induced premature senescence. These results suggest that Sp1 is an anti-senescence transcription factor in the telomere uncapping-induced senescence and that down-regulation of Sp1 leads to the senescence via down-regulation of the nuclear transport.


Assuntos
Senescência Celular/fisiologia , Diploide , Fator de Transcrição Sp1/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Fibroblastos/citologia , Humanos
2.
Plant Cell ; 23(1): 185-209, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21216945

RESUMO

Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Fosfatidilinositol 3-Quinases , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA de Plantas/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
3.
Microbiol Resour Announc ; : e0045924, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967471

RESUMO

Here, we present the draft genome of Bacillus proteolyticus IMGN4, the gram-positive, soil-dwelling bacterium discovered in mountain Maemi, Republic of Korea in May 2019. The assembly resulted in 7 contigs, comprising a total of 6,063,502 base pairs and have 6,115 coding sequences.

4.
Planta ; 237(1): 161-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001196

RESUMO

We characterized the gene expression, subcellular localization, and in vivo functions of a Nicotiana benthamiana small GTPase belonging to the RabE family, designated NbRabE1. The NbRabE1 promoter drove strong ß-glucuronidase reporter expression in young tissues containing actively dividing cells and in stomata guard cells. GFP fusion proteins of NbRabE1 and its dominant-negative and constitutively active mutants were all localized to the Golgi apparatus and the plasma membrane but showed different affinities for membrane attachment. Virus-induced gene silencing of NbRabE1 resulted in pleiotropic phenotypes, including growth arrest, premature senescence, and abnormal leaf development. At the cellular level, the leaves in which NbRabE1 was silenced contained abnormal stomata that lacked pores or contained incomplete ventral walls, suggesting that NbRabE1 deficiency leads to defective guard cell cytokinesis. Ectopic expression of the dominant-negative mutant of NbRabE1 in Arabidopsis thaliana resulted in retardation of shoot and root growth accompanied by defective root hair formation. These developmental defects are discussed in conjunction with proposed functions of RabE GTPases in polarized secretory vesicle trafficking.


Assuntos
Mutação , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas rab de Ligação ao GTP/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Western Blotting , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/ultraestrutura , Vírus de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/crescimento & desenvolvimento , Nicotiana/virologia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
5.
Mol Cell Biochem ; 368(1-2): 61-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22581442

RESUMO

Type I collagen is the major constituent of the skin and the reduction of dermal type I collagen content is closely associated with the intrinsic skin aging. We here found that esculetin, 6,7-dihydroxycoumarin, strongly induces type I procollagen expression in human dermal fibroblasts. Esculetin not only increased protein levels of type I procollagen but also increased mRNA levels of COL1A1 but not COL1A2. Esculetin activated the MAPKs (ERK1/2, p38, JNK) and PI3K/Akt pathways, through which it promoted the type I procollagen expression. We also demonstrated that the binding motifs for transcription factor Sp1 occur with the highest frequency in the COL1A1 promoter and that esculetin increases the Sp1 expression through the MAPK and PI3K/Akt pathways. These results suggest that esculetin promotes type I procollagen expression through the MAPK and PI3K/Akt pathways and that Sp1 might be involved in the esculetin-induced type I procollagen expression via activation of the COL1A1 transcription.


Assuntos
Antioxidantes/farmacologia , Colágeno Tipo I/biossíntese , Derme/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativação Transcricional/efeitos dos fármacos , Umbeliferonas/farmacologia , Células Cultivadas , Cadeia alfa 1 do Colágeno Tipo I , Derme/citologia , Fibroblastos/citologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Elementos de Resposta/fisiologia , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional/fisiologia
6.
Sci Rep ; 11(1): 9853, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972599

RESUMO

Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.


Assuntos
Transformação Celular Neoplásica/patologia , Ciclo-Oxigenase 2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Núcleo Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Cultura Primária de Células , Proteínas ras/metabolismo
7.
Front Oncol ; 11: 665420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959512

RESUMO

Although many cancer patients are administered radiotherapy for their treatment, the interaction between tumor cells and macrophages in the tumor microenvironment attenuates the curative effects of radiotherapy. The enhanced activation of mTOR signaling in the tumors promotes tumor radioresistance. In this study, the effects of rapamycin on the interaction between tumor cells and macrophages were investigated. Rapamycin and 3BDO were used to regulate the mTOR pathway. In vitro, tumor cells cocultured with macrophages in the presence of each drug under normoxic or hypoxic conditions were irradiated with γ-rays. In vivo, mice were irradiated with γ-radiation after injection with DMSO, rapamycin and 3BDO into tumoral regions. Rapamycin reduced the secretion of IL-4 in tumor cells as well as YM1 in macrophages. Mouse recombinant YM1 decreased the enhanced level of ROS and the colocalized proportion of both xCT and EEA1 in irradiated tumor cells. Human recombinant YKL39 also induced results similar to those of YM1. Moreover, the colocalized proportion of both xCT and LC3 in tumor tissues was elevated by the injection of rapamycin into tumoral regions. Overall, the suppression of mTOR signaling in the tumor microenvironment might be useful for the improvement of tumor radioresistance.

8.
Exp Mol Med ; 53(6): 1092-1108, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34188179

RESUMO

Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.


Assuntos
Senescência Celular , Proteômica , Núcleo Celular/metabolismo , Senescência Celular/genética , Regulação para Baixo
9.
Biochim Biophys Acta ; 1793(8): 1354-65, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19465063

RESUMO

Cyclooxygenase-2 (COX-2), an endoplasmic reticulum-resident protein, has been known to promote tumorigenesis, but the exact mechanisms involved have not been identified. We have previously reported that COX-2 physically interacts with the tumor suppressor p53 and regulates its function. However, it remains to be elucidated how COX-2 can interact with p53 residing in different compartments and whether their interaction is involved in the regulation of p53 function. We here demonstrated that upon genotoxic stress, COX-2 and p53 accumulate in the nucleus, where they physically interact with one another. We also showed that an amino-terminal region (amino acids 1-126) of COX-2 interacts with the DNA-binding domain of p53. The p53-interacting region was critical for COX-2-mediated inhibition of p53 DNA-binding and transcriptional activity as well as p53- and genotoxic stress-induced apoptosis. In addition, an active site mutant of COX-2 (S516Q) as well as wild-type COX-2 potently inhibited p53 transcriptional activity and genotoxic stress-induced apoptosis. These results suggest that COX-2 principally inhibits p53 function through a catalytic activity-independent mechanism and that COX-2 inhibits p53 function through a physical interaction with p53 in the nucleus. These findings provide novel insight into the action mechanisms of COX-2 and strongly suggest that the functional inactivation of p53 by COX-2 can be one of the mechanisms by which COX-2 promotes tumorigenesis.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Dano ao DNA , Primers do DNA/genética , Humanos , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
10.
J Microbiol Biotechnol ; 20(7): 1107-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20668404

RESUMO

Because conventional methods for detecting emetic-toxin-producing B. cereus are laborious and costly, various PCR assays, which are easy and cheap, have recently been reported. Therefore, this study estimated and compared the ability of various PCR assays to detect emetic-toxin-producing B. cereus strains isolated in Korea. The PCR assays were performed on 160 B. cereus strains, including 40 emetic-toxin-producing strains. Although the species-specific PCR assays were all shown to be highly specific, the sensitivities varied greatly. The accuracies of the primers were 97.5% (CER), 95.6% (EM1), 96.3% (RE234), 89.4% (CES), and 83.1% (Ces3R/CESR2). Moreover, the CER primer had a higher sensitivity (100%) than all the other primers tested, and a specificity of 96.7%. Thus, the CER primer was shown to be the most effective for screening the emetic-toxin-producing B. cereus strains tested in this study. However, the ability of these PCR assays to identify emetic-toxin-producing B. cereus should also be confirmed using other methods.


Assuntos
Bacillus cereus/metabolismo , Toxinas Bacterianas/biossíntese , Depsipeptídeos/biossíntese , Microbiologia de Alimentos , Reação em Cadeia da Polimerase/métodos , Bacillus cereus/genética , Toxinas Bacterianas/genética , Primers do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Depsipeptídeos/genética , Coreia (Geográfico) , Sensibilidade e Especificidade
11.
Mol Cells ; 43(4): 397-407, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32264658

RESUMO

DNAJB9 is known to be a member of the molecular chaperone gene family, whose cellular function has not yet been fully characterized. Here, we investigated the cellular function of DNAJB9 under strong mitogenic signals. We found that DNAJB9 inhibits p53-dependent oncogene-induced senescence (OIS) and induces neoplastic transformation under oncogenic RAS activation in mouse primary fibroblasts. In addition, we observed that DNAJB9 interacts physically with p53 under oncogenic RAS activation and that the p53-interacting region of DNAJB9 is critical for the inhibition of p53-dependent OIS and induction of neoplastic transformation by DNAJB9. These results suggest that DNAJB9 induces cell transformation under strong mitogenic signals, which is attributable to the inhibition of p53-dependent OIS by physical interactions with p53. This study might contribute to our understanding of the cellular function of DNAJB9 and the molecular basis of cell transformation.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Choque Térmico HSP40/uso terapêutico , Proteínas de Membrana/uso terapêutico , Chaperonas Moleculares/uso terapêutico , Oncogenes/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Proliferação de Células , Proteínas de Choque Térmico HSP40/farmacologia , Humanos , Proteínas de Membrana/farmacologia , Camundongos , Chaperonas Moleculares/farmacologia , Transfecção , Proteína Supressora de Tumor p53/metabolismo
12.
J Ginseng Res ; 43(1): 1-9, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30662288

RESUMO

BACKGROUND: Korean ginseng is an important cash crop in Asian countries. However, plant yield is reduced by pathogens. Among the Ilyonectria radicicola-species complex, I. mors-panacis is responsible for root-rot and replant failure of ginseng in Asia. The development of new methods to reveal the existence of the pathogen before cultivation is started is essential. Therefore, a quantitative real-time polymerase chain reaction method was developed to detect and quantify the pathogen in ginseng soils. METHODS: In this study, a species-specific histone H3 primer set was developed for the quantification of I. mors-panacis. The primer set was used on DNA from other microbes to evaluate its sensitivity and selectivity for I. mors-panacis DNA. Sterilized soil samples artificially infected with the pathogen at different concentrations were used to evaluate the ability of the primer set to detect the pathogen population in the soil DNA. Finally, the pathogen was quantified in many natural soil samples. RESULTS: The designed primer set was found to be sensitive and selective for I. mors-panacis DNA. In artificially infected sterilized soil samples, using quantitative real-time polymerase chain reaction the estimated amount of template was positively correlated with the pathogen concentration in soil samples (R 2  = 0.95), disease severity index (R 2  = 0.99), and colony-forming units (R 2  = 0.87). In natural soils, the pathogen was recorded in most fields producing bad yields at a range of 5.82 ± 2.35 pg/g to 892.34 ± 103.70 pg/g of soil. CONCLUSION: According to these results, the proposed primer set is applicable for estimating soil quality before ginseng cultivation. This will contribute to disease management and crop protection in the future.

13.
Food Sci Biotechnol ; 28(3): 913-922, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31093450

RESUMO

Egg products are widely consumed in Korea and continue to be associated with risks of Staphylococcus aureus-induced food poisoning. This prompted the development of predictive mathematical models to understand growth kinetics of S. aureus in egg products in order to improve the production of domestic food items. Egg products were inoculated with S. aureus and observe S. aureus growth. The growth kinetics of S. aureus was used to calculate lag-phase duration (LPD) and maximum specific growth rate (µmax) using Baranyi model as the primary growth model. The secondary models provided predicted values for the temperature changes and were created using the polynomial equation for LPD and a square root model for µmax. In addition, root mean square errors (RMSE) were analyzed to evaluate the suitability of the mathematical models. The developed models demonstrated 0.16-0.27 RMSE, suggesting that models properly represented the actual growth of S. aureus in egg products.

14.
Mech Ageing Dev ; 129(12): 706-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18848576

RESUMO

It has been recently proposed that pro-inflammatory genes such as cyclooxygenase-2 (COX-2) play a key role in the aging process. However, it remains unclear whether the pro-inflammatory activity of COX-2 is involved in the aging process and whether COX-2 inhibitors prevent aging. We therefore examined the effect of COX-2 inhibitors on aging in the cellular senescence model of human dermal fibroblasts (HDFs). While the catalytic activity of COX-2 was observed to increase in the senescence process, we found that among three selective COX-2 inhibitors studied, only NS-398 inhibited the senescence whereas celecoxib and nimesulide accelerated the senescence. Non-selective COX inhibitors including aspirin, ibuprofen and flurbiprofen accelerated the senescence. The senescence-regulating effect of selective COX-2 inhibitors had no correlation with cellular reactive oxygen species levels, NF-kappaB activities or protein levels of p53 and p21. We instead found that selective COX-2 inhibitors regulate caveolin-1 expression at transcriptional levels, which was closely associated with the inhibitors' effect on the senescence. Collectively, these results suggest that COX-2 catalytic activity does not mediate HDF senescence and that selective COX-2 inhibitors modulate HDF senescence by a catalytic activity-independent mechanism.


Assuntos
Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Aspirina/farmacologia , Caveolina 1/metabolismo , Celecoxib , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flurbiprofeno/farmacologia , Humanos , Ibuprofeno/farmacologia , Cinética , Modelos Biológicos , NF-kappa B/metabolismo , Nitrobenzenos/farmacologia , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
15.
PLoS One ; 13(12): e0209653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586442

RESUMO

Macrophages are one of the major cell types that produce IL-1ß. IL-1ß maturation occurs via inflammasome activation, and mature IL-1ß is then released from the cell. Secreted IL-1ß mediates inflammatory reactions in various pathological environments, such as those in infectious, autoimmune, and cancerous diseases. Although the mechanism of IL-1ß production has been discovered in infectious and autoimmune diseases, its production mechanism in the tumor microenvironment is unclear. Therefore, the mechanism of IL-1ß production in macrophages in the tumor microenvironment was investigated in this study. First, bone marrow-derived macrophages obtained from C57BL/6 mice were treated with B16F10 tumor-conditioned media (TCM) in vitro. TCM increased the levels of IL-1ß via glucose-mediated activation of the inflammasome. Moreover, TCM enhanced the activation of both NF-κB and mTOR pathways in a glucose-dependent manner. In particular, the expression levels of mTORC1 component proteins were dependent on the TCM-induced activation of NF-κB signaling. In addition, TCM affected ASC-ASC interactions through increasing intracellular reactive oxygen species levels. Finally, glucose inhibition by inoculation with 2-deoxy-D-glucose in vivo decreased the IL-1ß levels in both the blood and tumor region of B16F10-bearing C57BL/6 mice relative to those in PBS-injected tumor-bearing mice. These results suggest that glucose supplied from blood vessels might be important for IL-1ß production in tumor-associated macrophages via the integrated signals of the NF-κB and mTOR pathways in the tumor microenvironment.


Assuntos
Inflamação/genética , Interleucina-1beta/genética , Melanoma Experimental/genética , Serina-Treonina Quinases TOR/genética , Animais , Vasos Sanguíneos/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Glucose/antagonistas & inibidores , Glucose/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , NF-kappa B/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
16.
Mol Cells ; 41(5): 465-475, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29764005

RESUMO

The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.


Assuntos
Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Adulto , Idoso , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Feminino , Regulação Leucêmica da Expressão Gênica , Ontologia Genética , Genes Reporter , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Nucleofosmina , Prognóstico , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/fisiologia , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
17.
Exp Mol Med ; 39(4): 469-76, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17934334

RESUMO

Osteosarcoma is the most common primary bone tumor, but the pathogenesis is not well understood. While cyclooxygeanse-2 (COX-2) is known to be closely associated with tumor growth and metastasis in several kinds of human tumors, the function of COX-2 in osteosarcoma is unclear. Therefore, to investigate the function of COX-2 in osteosarcoma, we established stable cell lines overexpressing COX-2 in U2OS human osteosarcoma cells. COX-2 overexpression as well as prostaglandin E2 treatment promoted proliferation of U2OS cells. In addition, COX-2 overexpression enhanced mobility and invasiveness of U2OS cells, which was accompanied by increases of matrix metalloproteinase-2 and -9 (MMP-2 and -9) activities. Selective COX-2 inhibitors, NS-398 and celecoxib, inhibited cell proliferation and abrogated the enhanced mobility, invasiveness and MMP activities induced by COX-2 overexpression. These results suggest that COX-2 is directly associated with cell proliferation, migration and invasion in human osteosarcoma cells, and the therapeutic value of COX-2 inhibitors should be evaluated continuously.


Assuntos
Neoplasias Ósseas/enzimologia , Ciclo-Oxigenase 2/fisiologia , Osteossarcoma/enzimologia , Neoplasias Ósseas/patologia , Celecoxib , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/farmacologia , Ativação Enzimática , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Nitrobenzenos/farmacologia , Osteossarcoma/patologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia
18.
FASEB J ; 20(13): 2375-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17012241

RESUMO

Cyclooxygenase-2 (COX-2) has been implicated in neuronal survival and death. However, the precise regulatory mechanisms involved in COX-2 function are unclear. In the present study we found that COX-2 is induced in response to glutathione depletion-induced oxidative stress in primary cortical neurons. Two proximal specific Sp1 and Sp3 binding sites are responsible for the COX-2 promoter activity under normal as well as oxidative stress conditions through enhanced Sp1 and Sp3 DNA binding activity. Site-directed mutagenesis confirmed that -268/-267 positions serve as specific Sp1 and Sp3 recognition sites under oxidative stress. Enforced expression of Sp1 and Sp3 using HSV vectors increased the promoter activity, transcription, and protein level of COX-2 in cortical neurons. The dominant negative form of Sp1 abrogated the oxidative stress-induced promoter activity and expression of COX-2. We also demonstrated that adenovirus-mediated COX-2 gene delivery protected neurons from DNA damage induced by oxidative, genotoxic, and excitotoxic stresses and by ischemic injury. Moreover, COX-2(-/-) cortical neurons were more susceptible to DNA damage-induced cell death. These results indicate that in primary neurons Sp1 and Sp3 play an essential role in the modulation of COX-2 transcription, which mediates neuronal homeostasis and survival by preventing DNA damage in response to neuronal stress.


Assuntos
Córtex Cerebral/enzimologia , Ciclo-Oxigenase 2/genética , Dano ao DNA , Neurônios/fisiologia , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp2/metabolismo , Animais , Sequência de Bases , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sobrevivência Celular , Clonagem Molecular , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/deficiência , Primers do DNA , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/patologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Genomics Inform ; 15(2): 56-64, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28638310

RESUMO

We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor ß receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

20.
Oncotarget ; 8(15): 24932-24948, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28212561

RESUMO

Toll-like receptor (TLR) ligands are strongly considered immune-adjuvants for cancer immunotherapy and have been shown to exert direct anti-cancer effects. This study was performed to evaluate the synergistic anti-cancer and anti-metastatic effects of the TLR7 agonist imiquimod (IMQ) during radiotherapy for melanoma. The pretreatment of B16F10 or B16F1 cells with IMQ combined with γ-ionizing radiation (IR) led to enhanced cell death via autophagy, as demonstrated by increased expression levels of autophagy-related genes, and an increased number of autophagosomes in both cell lines. The results also confirmed that the autophagy process was accelerated via the reactive oxygen species (ROS)-mediated MAPK and NF-κB signaling pathway in the cells pretreated with IMQ combined with IR. Mice subcutaneously injected with melanoma cells showed a reduced tumor growth rate after treatment with IMQ and IR. Treatment with 3-methyladenine (3-MA), ameliorated the anti-cancer effect of IMQ combined with IR. Additionally, the combination therapy enhanced anti-cancer immunity, as demonstrated by an increased number of CD8+ T cells and decreased numbers of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSCs) in the tumor lesions. Moreover, the combination therapy decreased the number of metastatic nodules in the lungs of mice that were injected with B16F10 cells via the tail vein. In addition, the combination therapy enhanced systemic anti-cancer immunity by increasing the abundances of T cell populations expressing IFN-γ and TNF-α. Therefore, these findings suggest that IMQ could serve as a radiosensitizer and immune booster during radiotherapy for melanoma patients.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/radioterapia , Glicoproteínas de Membrana/agonistas , Receptor 7 Toll-Like/agonistas , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quimiorradioterapia , Modelos Animais de Doenças , Imiquimode , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA