Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7840): 116-119, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208947

RESUMO

The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals1. The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors2-4. A subset of these, the conserved class A ARFs5, are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle2,3. Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genes de Plantas/genética , Mutação , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido
2.
Chemistry ; 30(17): e202303779, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38095235

RESUMO

Oxygen evolution reaction (OER) is the key anode reaction of electrolytic water. To improve the slow OER kinetics, we synthesize nanoflower-like Co-Fe-Cr-Mo-Mn high-entropy spinel (HES) nanosheets on nickel foam (NF) by one-step solvothermal method, which exhibit an overpotential (η10) of only 188 mV at 10 mA cm-2, much lower than bimetallic CoFeOx/NF (233 mV), trimetallic CoFeCrOx/NF (211 mV), and tetrametallic CoFeCrMoOx/NF (200 mV). The OER overpotential decreases with the increase of the number of metals, indicating that the formation of HES has a positive effect on the improvement of electrocatalytic performance, since the synergistic effect between different metals enhances the charge transfer rate and decreases reaction barrier. In-situ Raman spectra demonstrate that the formation of γ-NiOOH on the HES surface is a crucial active species for the OER. This work demonstrates a simple and efficient synthesis method to prepare nanoflower-like high-entropy electrocatalysts for efficient OER electrocatalysis.

3.
Ecotoxicol Environ Saf ; 280: 116579, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865940

RESUMO

Environmental exposure to the cadmium (Cd) has been shown to be a risk factor for colorectal cancer (CRC) progression, but the exact mechanism has not been fully elucidated. In this study, we found that chronic Cd (3 µM) exposure promoted the proliferation, adhesion, migration, and invasion of CRC cells in vitro, as well as lung metastasis in vivo. RNA-seq and TCGA-COAD datasets revealed that decreased hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit beta (HADHB) expression may be a crucial factor in Cd-induced CRC progression. Further analysis using qRT-PCR and tissue microarrays from CRC patients showed that HADHB expression was significantly reduced in CRC tissues compared to adjacent normal tissues, and low HADHB expression was associated with adverse clinical features and poor overall survival, either directly or through TNM stage. Furthermore, HADHB was found to play an important role in the Cd-induced malignant metastatic phenotype of CRC cells and lung metastasis in mice. Mechanistically, we discovered that chronic Cd exposure resulted in hypermethylation of the HADHB promoter region via inhibition of DNA demethylase tet methylcytosine dioxygenase 2 (TET2), which then led to decreased HADHB expression and activation of the FAK signaling pathway, and ultimately contributed to CRC progression. In conclusion, this study provided a new potential insight and evaluable biomarker for Cd exposure-induced CRC progression and treatment.


Assuntos
Cádmio , Neoplasias Colorretais , Proteínas de Ligação a DNA , Dioxigenases , Progressão da Doença , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/induzido quimicamente , Humanos , Dioxigenases/genética , Animais , Camundongos , Cádmio/toxicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Masculino , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos Nus , Metilação de DNA/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
4.
J Environ Manage ; 362: 121334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824890

RESUMO

A series of V-xCe/Ti catalysts was prepared by a step impregnation method with gradual increased Ce amount. Compared to the commercial V-W/Ti catalysts, the V-xCe/Ti catalysts exhibited considerably higher COx selectivity during the oxidation of naphthalene (Nap), and less intermediates or by-products were detected both in gas phase and on the surface of the catalysts. Through a series of characterizations, it was found that abundance of weak basic sites in the form of OH was introduced by Ce, as well as the oxygen vacancies caused by the redox cycle of V4++Ce4+↔V5++Ce3+. The weak basic sites introduced by Ce could greatly enhance the Nap adsorption, and the Nap adsorbed was quickly converted to naphthol on Ce-OH. Furthermore, V existed at a high valence with the interaction of V and Ce, and the oxygen vacancies also increased the Oads and OOH. It improved the redox ability and the regeneration of Ce-OH on V-xCe/Ti catalysts. The intermediates could be further oxidized, and the Ce-OH consumed in the reaction could recover quickly. Therefore, almost 100% Nap conversion and a high COx selectivity was observed in the V-xCe/Ti catalysts system.


Assuntos
Naftalenos , Oxirredução , Naftalenos/química , Catálise , Adsorção
5.
BMC Genomics ; 24(1): 425, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501118

RESUMO

BACKGROUND: Growing evidence indicates that RNA methylation plays a fundamental role in epigenetic regulation, which is associated with the tumorigenesis and drug resistance. Among them, acute myeloid leukemia (AML), as the top acute leukemia for adults, is a deadly disease threatening human health. Although N7-methylguanosine (m7G) has been identified as an important regulatory modification, its distribution has still remained elusive. METHODS: The present study aimed to explore the long non-coding RNA (lncRNA) functional profile of m7G in AML and drug-resistant AML cells. The transcriptome-wide m7G methylation of lncRNA was analyzed in AML and drug-resistant AML cells. RNA MeRIP-seq was performed to identify m7G peaks on lncRNA and differences in m7G distribution between AML and drug-resistant AML cells. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to predict the possible roles and m7G-associated pathway. RESULTS: Using m7G peak sequencing, it was found that a sequence motif was necessary for m7G methylation in drug-resistant AML lncRNA. Unsupervised hierarchical cluster analysis confirmed that lncRNA m7G methylation occurred more frequently in drug-resistant AML cells than in AML cells. RNA sequencing demonstrated that more genes were upregulated by methylation in drug-resistant AML cells, while methylation downregulated more genes in AML cells. The GO and KEGG pathway enrichment analyses revealed that genes having a significant correlation with m7G sites in lncRNA were involved in drug-resistant AML signaling pathways. CONCLUSION: Significant differences in the levels and patterns of m7G methylation between drug-resistant AML cells and AML cells were revealed. Furthermore, the cellular functions potentially influenced by m7G in drug-resistant AML cells were predicted, providing evidence implicating m7G-mediated lncRNA epigenetic regulation in the progression of drug resistance in AML. These findings highlight the involvement of m7G in the development of drug resistance in AML.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Adulto , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epigênese Genética , Leucemia Mieloide Aguda/genética , Transcriptoma
6.
Plant Physiol ; 188(1): 56-69, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34718789

RESUMO

Studying the developmental genetics of plant organs requires following gene expression in specific tissues. To facilitate this, we have developed dual expression anatomy lines, which incorporate a red plasma membrane marker alongside a fluorescent reporter for a gene of interest in the same vector. Here, we adapted the GreenGate cloning vectors to create two destination vectors showing strong marking of cell membranes in either the whole root or specifically in the lateral roots. This system can also be used in both embryos and whole seedlings. As proof of concept, we follow both gene expression and anatomy in Arabidopsis (Arabidopsis thaliana) during lateral root organogenesis for a period of over 24 h. Coupled with the development of a flow cell and perfusion system, we follow changes in activity of the DII auxin sensor following application of auxin.


Assuntos
Arabidopsis/genética , Arabidopsis/ultraestrutura , Membrana Celular/ultraestrutura , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/ultraestrutura , Ultrassonografia/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter
7.
Plant Cell Environ ; 46(11): 3206-3217, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37614098

RESUMO

In legumes, a common phenomenon known as nyctinastic movement is observed. This movement involves the horizontal expansion of leaves during the day and relative vertical closure at night. Nyctinastic movement is driven by the pulvinus, which consists of flexor and extensor motor cells. The turgor pressure difference between these two cell types generates a driving force for the bending and deformation of the pulvinus. This review focuses on the developmental mechanisms of the pulvinus, the factors affecting nyctinastic movement, and the biological significance of this phenomenon in legumes, thus providing a reference for further research on nyctinastic movement.


Assuntos
Fabaceae , Pulvínulo , Folhas de Planta/metabolismo , Pulvínulo/metabolismo , Movimento
9.
Int J Syst Evol Microbiol ; 70(11): 5799-5805, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32945762

RESUMO

A floc-forming bacterial strain, designated HKLI-1T, was isolated from the activated sludge of a municipal sewage treatment plant in Hong Kong SAR, PR China. Cells of this strain were Gram-stain-negative, strictly aerobic, catalase- and oxidase-positive, rod-shaped and motile by means of a single polar flagellum. Growth occurred at 18-37 °C (optimum, 28 °C), pH 5.5-9.0 (optimum, pH 7.5) and with 0-8.0 % (w/v) NaCl (optimum, 1-1.5 %) concentration. The major fatty acids of strain HKLI-1T were C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The polar lipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and three unidentified lipids. The DNA G+C content was 63.5 mol% from whole genomic sequence analysis. Based on the results of 16S rRNA gene sequences analysis, this strain should be assigned to the genus Azoarcus and is closely related to Azoarcus olearius DQS-4T (94.93 % 16S rRNA gene sequence pairwise similarity), Azoarcus toluclasticus MF63T (94.91 %) and Azoarcus communis SWub3T (94.01 %), but separate from them by large distances in different phylogenetic trees. Based on whole genome analysis, the orthologous average nucleotide identity and in silico DNA-DNA hybridization values against four of the closest relatives were 73.03-74.83 and 17.2-23.0 %, respectively. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrated that strain HKLI-1T could be distinguished from its phylogenetically related species, and that this strain represented a novel species within the genus Azoarcus, for which the name Azoarcus halotolerans sp. nov. is proposed. The type strain is HKLI-1T (= 72659T=CCTCC AB 2019312T).


Assuntos
Azoarcus/classificação , Filogenia , Esgotos/microbiologia , Azoarcus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hong Kong , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Mikrochim Acta ; 187(12): 671, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225378

RESUMO

A ternary hybrid material composed of Ni nanoparticles (NPs), TiO2 NPs, and poly(L-lysine) (Ply) was used as a sensing material. It was electrodeposited in situ onto a commercial 433-MHz surface acoustic wave (SAW) resonator to construct a Ni-TiO2-Ply/SAW sensor. The Ni-TiO2-Ply sensing layer fully covered the resonant cavity of the SAW resonator. As the sensing layer completely covers the interdigital transducer and piezoelectric substrate, the sensing area is significantly increased, and the resonator is protected from damage or contamination. To detect the level of dopamine (DA) in serum, the fabrication of the Ni-TiO2-Ply sensing layer, distributions of various components in the sensing layer, and responses of the SAW biosensor to DA were investigated in detail. In addition, an electric field-assisted liquid-phase oxidation technique was developed for loading analytes onto the SAW sensors. After optimizing the pH value and L-lysine content of the sensing layer electrolyte and the pH value of the DA solution, the SAW biosensor responded to DA with a linear concentration range of 1 to 1000 nM, sensitivity of 5.77 MHz nM-1 cm-2, and limit of detection of 0.067 nM. Moreover, the sensor exhibited good selectivity, reproducibility, and stability at ambient temperature.Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Dopamina/análise , Níquel/química , Polilisina/química , Titânio/química , Dopamina/sangue , Limite de Detecção , Reprodutibilidade dos Testes , Som
11.
J Exp Bot ; 70(1): 205-215, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376110

RESUMO

Both tracheary elements and fiber cells undergo programmed cell death (PCD) during xylem development. In this study we investigated the role of papain-like cysteine protease CEP1 in PCD in the xylem of Arabidopsis. CEP1 was located in the cell wall of xylem cells, and CEP1 expression levels in inflorescence stems increased during stem maturation. cep1 mutant plants exhibited delayed stem growth and reduced xylem cell number compared to wild-type plants. Transmission electron microscopy demonstrated that organelle degradation was delayed during PCD, and thicker secondary walls were present in fiber cells and tracheary elements of the cep1 mutant. Transcriptional analyses of the maturation stage of the inflorescence stem revealed that genes involved in the biosynthesis of secondary wall components, including cellulose, hemicellulose, and lignin, as well as wood-associated transcriptional factors, were up-regulated in the cep1 mutant. These results suggest that CEP1 is directly involved in the clearing of cellular content during PCD and regulates secondary wall thickening during xylem development.


Assuntos
Apoptose/genética , Arabidopsis/fisiologia , Parede Celular/genética , Cisteína Endopeptidases/genética , Xilema/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Regulação da Expressão Gênica de Plantas , Xilema/genética
12.
J Environ Manage ; 238: 1-9, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30836279

RESUMO

In this study, the experimental vertical-flow constructed wetland (CW) systems planted with the salt-tolerant mangrove species Kandelia candel were established to investigate the influence of salinity fluctuations on the denitrification performance and denitrifying microbial community structure of the CWs. The high-throughput sequencing analysis showed that 10-13 genera aerobic microbes had been enriched in the upper layer of wetland matrix in the depth of 10-25 cm, with the relative abundance accounting for 19.1 ±â€¯7.9%. Although the ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were inhibited significantly in the CW systems with salinity levels in the range of 0.9-1.8%, the aerobic denitrifying (AD) bacteria including Pseudomonas, Acinetobacter and Aeromonas, removed 99% of ammonia nitrogen from the influent by heterotrophic nitrification (HN) functions, and conducted denitrification at the same time to remove 90% of the TN in the system, indicating that the wetland test system successfully enriched a variety of aerobic denitrifying bacterial communities under different salinity conditions. Not only the nitrogen removal efficiency but also the adaptability of the wetland system to salinity fluctuations had been improved by the enriched HN-AD bacteria. In addition, HN-AD bacterial communities can conduct both nitrification and denitrification in the middle and upper layers of the vertical flow wetland, hereby saving the reaction space of the constructed wetland and reducing the construction cost.


Assuntos
Microbiota , Áreas Alagadas , Desnitrificação , Nitrificação , Nitrogênio , Salinidade
13.
iScience ; 27(6): 109936, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832021

RESUMO

Auxin regulates plant growth and development through the transcription factors of the AUXIN RESPONSE FACTOR (ARF) gene family. ARF7 is one of five activators that bind DNA and elicit downstream transcriptional responses. In roots, ARF7 regulates growth, gravitropism and redundantly with ARF19, lateral root organogenesis. In this study we analyzed ARF7 cis-regulation, using different non-coding sequences of the ARF7 locus to drive GFP. We show that constructs containing the first intron led to increased signal in the root tip. Although bioinformatics analyses predicted several transcription factor binding sites in the first intron, we were unable to significantly alter expression of GFP in the root by mutating these. We instead observed the intronic sequences needed to be present within the transcribed sequences to drive expression in the root meristem. These data support a mechanism by which intron-mediated enhancement regulates the tissue specific expression of ARF7 in the root meristem.

14.
Front Cell Infect Microbiol ; 14: 1333145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812752

RESUMO

Objective: To investigate the structure, composition, and functions of the gut microbiota in elderly patients with hyperlipidemia. Methods: Sixteen older patients diagnosed with hyperlipidemia (M group) and 10 healthy, age-matched normal volunteers (N group) were included. These groups were further subdivided by sex into the male normal (NM, n = 5), female normal (NF, n = 5), male hyperlipidemia (MM, n = 8), and female hyperlipidemia (MF, n = 8) subgroups. Stool samples were collected for high-throughput sequencing of 16S rRNA genes. Blood samples were collected for clinical biochemical index testing. Results: Alpha- and beta-diversity analyses revealed that the structure and composition of the gut microbiota were significantly different between the M and N groups. The relative abundances of Bacteroides, Parabacteroides, Blautia, Peptococcus, and Bifidobacterium were significantly decreased, while those of Lactobacillus, Helicobacter, and Desulfovibrio were significantly higher in the M group. There were also significant sex-related differences in microbial structure between the NM and NF groups, and between the MM and MF groups. Through functional prediction with PICRUSt 2, we observed distinct between-group variations in metabolic pathways associated with the gut microbiota and their impact on the functionality of the nervous system. Pearson's correlation coefficient was used as a distance metric to build co-abundance networks. A hypergeometric test was used to detect taxonomies with significant enrichment in specific clusters. We speculated that modules with Muribaculaceae and Lachnospiraceae as the core microbes play an important ecological role in the intestinal microbiota of the M group. The relative intestinal abundances of Agathobacter and Faecalibacterium in the M group were positively correlated with serum triglyceride and low-density lipoprotein levels, while the relative abundance of Bifidobacterium was negatively correlated with the serum lipoprotein a level.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Hiperlipidemias , RNA Ribossômico 16S , Humanos , Microbioma Gastrointestinal/genética , Masculino , Feminino , Idoso , Hiperlipidemias/microbiologia , RNA Ribossômico 16S/genética , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais
15.
Comput Biol Med ; 175: 108441, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663353

RESUMO

At present, anti-cancer drug synergy therapy is one of the most important methods to overcome drug resistance and reduce drug toxicity in cancer treatment. High-throughput screening through deep learning can effectively improve the efficiency of discovering synergistic drugs. Nowadays, most of the existing deep learning algorithms for anti-cancer drug synergy prediction use deep neural networks and can only implicitly perform feature interaction. This study proposes a deep learning algorithm, named MolCross, which combines implicit feature interaction with explicit features to improve the accuracy of prediction of the anti-cancer drug synergy score. MolCross uses a deep autoencoder to extract features from high-dimensional input, uses the drug-specific subnetworks and cross-network to perform implicit feature interaction and explicit feature interaction respectively, and finally uses a synergy prediction network to combine the two feature interaction methods to obtain the final prediction results. We adopted a five-fold cross validation and compared MolCross with other four anti-cancer drug synergy prediction models. The results show that MolCross has better prediction performance than other models. MolCross also has good performance in terms of cross-cell line and cross-tissue type. Existing studies have demonstrated that cancer molecular subtypes have different sensitivities to targeted therapy. In this study, the features of cancer molecular subtype were introduced in the model using an embedding layer in MolCross to explore the effect of cancer molecular subtype on anti-cancer drug synergy. We also found that the cancer molecular subtype is one of the main factors affecting the synergy between drugs.


Assuntos
Antineoplásicos , Aprendizado Profundo , Sinergismo Farmacológico , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Algoritmos , Redes Neurais de Computação
16.
Chem Sci ; 15(21): 7870-7907, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817558

RESUMO

The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.

17.
J Hazard Mater ; 467: 133692, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341886

RESUMO

Cigarette smoking substantially promotes tumorigenesis and progression of colorectal cancer; however, the underlying molecular mechanism remains unclear. Among 662 colorectal cancer patients, our investigation revealed a significant correlation between cigarette smoking and factors, such as large tumor size, poor differentiation, and high degree of invasion. Among the nicotine-derived nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) emerged as the most critical carcinogen, which significantly promoted the malignant progression of colorectal cancer both in vivo and in vitro. The results of methylated RNA immunoprecipitation and transcriptome sequencing indicated that NNK upregulated transmembrane and ubiquitin-like domain-containing protein 1 (TMUB1) via N6-adenosine methylation, which was regulated by methyltransferase-like 14 (METTL14) and YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Elevated TMUB1 levels were associated with a higher risk of cancer invasion and metastasis, leading to a high mortality risk in patients with colorectal cancer. Additionally, TMUB1 promoted lysine63-linked ubiquitination of AKT by interacting with AMFR, which led to the induction of malignant proliferation and metastasis in colorectal cancer cells exposed to NNK. In summary, this study provides a new insight, indicating that targeting TMUB1 expression via METTL14/YTHDF2 mediated N6-adenosine methylation may be a potential therapeutic and prognostic target for patients with colorectal cancer who smoke.


Assuntos
Adenina/análogos & derivados , Neoplasias Colorretais , Nicotina , Humanos , Proteínas Proto-Oncogênicas c-akt , Adenosina , Proteínas de Ligação a RNA , Metiltransferases/genética
18.
Chin Med J (Engl) ; 137(13): 1592-1602, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38644799

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in many critically ill patients. Although inflammasome activation plays an important role in the induction of acute lung injury (ALI) and ARDS, the regulatory mechanism of this process is still unclear. When cells are stimulated by inflammation, the integrity and physiological function of mitochondria play a crucial part in pyroptosis. However, the underlying mechanisms and function of mitochondrial proteins in the process of pyroptosis are largely not yet known. Here, we identified the 18-kDa translocator protein (TSPO), a mitochondrial outer membrane protein, as an important mediator regulating nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in macrophages during ALI. METHODS: TSPO gene knockout (KO) and lipopolysaccharide (LPS)-induced ALI/ARDS mouse models were employed to investigate the biological role of TSPO in the pathogenesis of ARDS. Murine macrophages were used to further characterize the effect of TSPO on the NLRP3 inflammasome pathway. Activation of NLRP3 inflammasome was preformed through LPS + adenosine triphosphate (ATP) co-stimulation, followed by detection of mitochondrial membrane potential, reactive oxygen species (ROS) production, and cell death to evaluate the potential biological function of TSPO. Comparisons between two groups were performed with a two-sided unpaired t -test. RESULTS: TSPO- KO mice exhibited more severe pulmonary inflammation in response to LPS-induced ALI. TSPO deficiency resulted in enhanced activation of the NLRP3 inflammasome pathway, promoting more proinflammatory cytokine production of macrophages in LPS-injured lung tissue, including interleukin (IL)-1ß, IL-18, and macrophage inflammatory protein (MIP)-2. Mitochondria in TSPO -KO macrophages tended to depolarize in response to cellular stress. The increased production of mitochondrial damage-associated molecular pattern led to enhanced mitochondrial membrane depolarization and pyroptosis in TSPO -KO cells. CONCLUSION: TSPO may be the key regulator of cellular pyroptosis, and it plays a vital protective role in ARDS occurrence and development.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Receptores de GABA , Animais , Lesão Pulmonar Aguda/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Piroptose/fisiologia , Receptores de GABA/metabolismo , Receptores de GABA/genética , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/metabolismo
19.
Int J Biol Macromol ; 264(Pt 1): 130526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431008

RESUMO

Although a promising method for lignin depolymerization, photocatalysis faces the challenge of low efficiency. In this study, MoS2/ZnO heterojunction catalysts, endowed with piezocatalysis and photocatalytic capabilities, were crafted through Zn ion intercalation for the depolymerization of phenoxyphenylethanol (PP-ol) and alkali lignin. Then, the synergistic interplay between ultrasonic-induced piezoelectric fields and heterojunctions was analyzed. The amalgamation of the piezoelectric field and heterojunction in MoS2/ZnO catalysts resulted in a diminished photogenerated hole/electron recombination efficiency, thereby fostering the generation of ·OH during the reaction. This pivotal role of ·OH emerged as a crucial reactive substance, converting 95.8 % of PP-ol through ß-O-4 bond breaking within a 3-h treatment. By incorporating ultrasonic, the contact probability of PP-ol with the catalyst was significantly improved, resulting in efficient conversion even with a reduced amount of acetonitrile in the solvent system (20 %). Furthermore, ultrasonic-light methods show high efficiency for depolymerizing Alkali lignin (AL), with 33.2 % of lignin undergoing depolymerization in a 4-h treatment. This treatment simultaneously reduces the molecular weight of AL and cleaves numerous chemical bonds within it. Overall, this work presents a green approach to lignin depolymerization, providing insights into the synergistic action of ultrasonic and photocatalysis.


Assuntos
Lignina , Óxido de Zinco , Lignina/química , Ultrassom , Molibdênio , Catálise , Álcalis
20.
Food Chem ; 450: 139387, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38643648

RESUMO

Dried shiitake mushrooms offer rich nutritional value and unique sensory properties, prompting further investigation. The effects of different drying techniques (hot air drying (HAD), infrared hot air drying (IRHAD), pulsed vacuum drying (PVD), vacuum freeze drying (VFD), and natural drying (ND)) combined with enzymatic hydrolysis on the release of flavor compounds and nutrients from shiitake mushrooms were explored. The combination of HAD with cellulase hydrolysis yielded notably high levels of umami amino acids (5.4723 ± 0.1501 mg/g) and 5'-nucleotides (4.0536 ± 0.0062 mg/g), and superior volatile flavors. Combined with cellulase hydrolysis, IRHAD achieved the highest level of total sugars (6.57 ± 0.34 mg/mL), VFD resulted in the greatest soluble protein content (153.21 ± 0.23 µg/mL), PVD yielded the highest total phenolics content (93.20 ± 0.41 µg GAE/mL), and ND produced the maximum reducing sugar content (5.79 ± 0.13 mg/mL). This study addresses crucial gap in the post-drying processing of shiitake mushrooms, offering valuable insights for further product development of shiitake mushrooms.


Assuntos
Celulase , Dessecação , Valor Nutritivo , Cogumelos Shiitake , Paladar , Cogumelos Shiitake/química , Hidrólise , Dessecação/métodos , Celulase/química , Celulase/metabolismo , Humanos , Aromatizantes/química , Manipulação de Alimentos , Aminoácidos/análise , Aminoácidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA