Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 572(7770): 493-496, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435059

RESUMO

In the quest to understand high-temperature superconductivity in copper oxides, debate has been focused on the pseudogap-a partial energy gap that opens over portions of the Fermi surface in the 'normal' state above the bulk critical temperature1. The pseudogap has been attributed to precursor superconductivity, to the existence of preformed pairs and to competing orders such as charge-density waves1-4. A direct determination of the charge of carriers as a function of temperature and bias could help resolve among these alternatives. Here we report measurements of the shot noise of tunnelling current in high-quality La2-xSrxCuO4/La2CuO4/La2-xSrxCuO4 (LSCO/LCO/LSCO) heterostructures fabricated using atomic layer-by-layer molecular beam epitaxy at several doping levels. The data delineate three distinct regions in the bias voltage-temperature space. Well outside the superconducting gap region, the shot noise agrees quantitatively with independent tunnelling of individual charge carriers. Deep within the superconducting gap, shot noise is greatly enhanced, reminiscent of multiple Andreev reflections5-7. Above the critical temperature and extending to biases much larger than the superconducting gap, there is a broad region in which the noise substantially exceeds theoretical expectations for single-charge tunnelling, indicating pairing of charge carriers. These pairs are detectable deep into the pseudogap region of temperature and bias. The presence of these pairs constrains current models of the pseudogap and broken symmetry states, while phase fluctuations limit the domain of superconductivity.

2.
Nano Lett ; 24(32): 9923-9930, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39078726

RESUMO

The natural van der Waals superlattice MnBi2Te4-(Bi2Te3)m provides an optimal platform to combine topology and magnetism in one system with minimal structural disorder. Here, we show that this system can harbor both ferromagnetic (FM) and antiferromagnetic (AFM) orders and that these magnetic orders can be controlled in two different ways by either varying the Mn-Mn distance while keeping the Bi2Te3/MnBi2Te4 ratio constant or vice versa. We achieve this by creating atomically engineered sandwich structures composed of Bi2Te3 and MnBi2Te4 layers. We show that the AFM order is exclusively determined by the Mn-Mn distance, whereas the FM order depends only on the overall Bi2Te3/MnBi2Te4 ratio regardless of the distance between the MnBi2Te4 layers. Our results shed light on the origins of the AFM and FM orders and provide insights into how to manipulate magnetic orders not only for the MnBi2Te4-Bi2Te3 system but also for other magneto-topological materials.

3.
Proc Natl Acad Sci U S A ; 118(40)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593631

RESUMO

Chiral magnets have recently emerged as hosts for topological spin textures and related transport phenomena, which can find use in next-generation spintronic devices. The coupling between structural chirality and noncollinear magnetism is crucial for the stabilization of complex spin structures such as magnetic skyrmions. Most studies have been focused on the physical properties in homochiral states favored by crystal growth and the absence of long-ranged interactions between domains of opposite chirality. Therefore, effects of the high density of chiral domains and domain boundaries on magnetic states have been rarely explored so far. Herein, we report layered heterochiral Cr1/3TaS2, exhibiting numerous chiral domains forming topological defects and a nanometer-scale helimagnetic order interlocked with the structural chirality. Tuning the chiral domain density, we discovered a macroscopic topological magnetic texture inside each chiral domain that has an appearance of a spiral magnetic superstructure composed of quasiperiodic Néel domain walls. The spirality of this object can have either sign and is decoupled from the structural chirality. In weak, in-plane magnetic fields, it transforms into a nonspiral array of concentric ring domains. Numerical simulations suggest that this magnetic superstructure is stabilized by strains in the heterochiral state favoring noncollinear spins. Our results unveil topological structure/spin couplings in a wide range of different length scales and highly tunable spin textures in heterochiral magnets.

4.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33622788

RESUMO

Vanadium dioxide (VO2) has attracted much attention owing to its metal-insulator transition near room temperature and the ability to induce volatile resistive switching, a key feature for developing novel hardware for neuromorphic computing. Despite this interest, the mechanisms for nonvolatile switching functioning as synapse in this oxide remain not understood. In this work, we use in situ transmission electron microscopy, electrical transport measurements, and numerical simulations on Au/VO2/Ge vertical devices to study the electroforming process. We have observed the formation of V5O9 conductive filaments with a pronounced metal-insulator transition and that vacancy diffusion can erase the filament, allowing for the system to "forget." Thus, both volatile and nonvolatile switching can be achieved in VO2, useful to emulate neuronal and synaptic behaviors, respectively. Our systematic operando study of the filament provides a more comprehensive understanding of resistive switching, key in the development of resistive switching-based neuromorphic computing.

5.
Nano Lett ; 23(15): 7143-7149, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523664

RESUMO

Electric field control of topologically nontrivial magnetic textures, such as skyrmions, provides a paradigm shift for future spintronics beyond the current silicon-based technology. While significant progress has been made by X-ray and neutron scattering studies, direct observation of such nanoscale spin structures and their dynamics driven by external electric fields remains a challenge in understanding the underlying mechanisms and harness functionalities. Here, using Lorentz transmission electron microscopy combined with in situ electric and magnetic fields at liquid helium temperatures, we report the crystallographic orientation-dependent skyrmion responses to electric fields in thin slabs of magnetoelectric Cu2OSeO3. We show that electric fields not only stabilize the hexagonally packed skyrmion lattices in the entire sample in a hysteretic manner but also induce the rotation of their reciprocal vector discretely by 30°. The nonvolatile and energy-efficient skyrmion lattice control by electric fields demonstrated in this work provides an important foundation for designing skyrmion-based qubits and memory devices.

6.
Nat Mater ; 21(7): 754-760, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513502

RESUMO

Semiconductors, featuring tunable electrical transport, and magnets, featuring tunable spin configurations, form the basis of many information technologies. A long-standing challenge has been to realize materials that integrate and connect these two distinct properties. Two-dimensional (2D) materials offer a platform to realize this concept, but known 2D magnetic semiconductors are electrically insulating in their magnetic phase. Here we demonstrate tunable electron transport within the magnetic phase of the 2D semiconductor CrSBr and reveal strong coupling between its magnetic order and charge transport. This provides an opportunity to characterize the layer-dependent magnetic order of CrSBr down to the monolayer via magnetotransport. Exploiting the sensitivity of magnetoresistance to magnetic order, we uncover a second regime characterized by coupling between charge carriers and magnetic defects. The magnetoresistance within this regime can be dynamically and reversibly tuned by varying the carrier concentration using an electrostatic gate, providing a mechanism for controlling charge transport in 2D magnets.


Assuntos
Magnetismo , Semicondutores , Fenômenos Magnéticos , Imãs
7.
Nano Lett ; 22(18): 7522-7526, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36070237

RESUMO

Epitaxial Fe(Te,Se) thin films have been grown on various substrates but never been grown on magnetic layers. Here we report the epitaxial growth of fourfold Fe(Te,Se) film on a sixfold antiferromagnetic insulator, MnTe. The Fe(Te,Se)/MnTe heterostructure shows a clear superconducting transition at around 11 K, and the critical magnetic field measurement suggests the origin of the superconductivity to be bulk-like. Structural characterizations suggest that the uniaxial lattice match between Fe(Te,Se) and MnTe allows a hybrid symmetry epitaxy mode, which was recently discovered between Fe(Te,Se) and Bi2Te3. Furthermore, the Te/Fe flux ratio during deposition of the Fe(Te,Se) layer is found to be critical for its superconductivity. Now that superconducting Fe(Te,Se) can be grown on two related hexagonal platforms, Bi2Te3 and MnTe, this result opens a new possibility of combining topological superconductivity of Fe(Te,Se) with the rich physics in the intrinsic magnetic topological materials (MnTe)n(Bi2Te3)m family.

8.
Phys Rev Lett ; 129(23): 236601, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563198

RESUMO

Kagome lattice materials have attracted growing interest for their topological properties and flatbands in electronic structure. We present a comprehensive study on the anisotropy and out-of-plane electric transport in Fe_{3}Sn_{2}, a metal with bilayer of Fe kagome planes and with massive Dirac fermions that features high-temperature noncollinear magnetic structure and magnetic skyrmions. For the electrical current path along the c axis, in micron-size crystals, we found a large topological Hall effect over a wide temperature range down to spin-glass state. Twofold and fourfold angular magnetoresistance are observed for different magnetic phases, reflecting the competition of magnetic interactions and magnetic anisotropy in kagome lattice that preserve robust topological Hall effect for inter-kagome bilayer currents. This provides new insight into the anisotropy in Fe_{3}Sn_{2}, of interest in skyrmionic-bubble application-related micron-size devices.

9.
Nano Lett ; 21(14): 5914-5919, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34265206

RESUMO

Controlling magnetic order in magnetic topological insulators (MTIs) is a key to developing spintronic applications with MTIs and is commonly achieved by changing the magnetic doping concentration, which inevitably affects the spin-orbit coupling strength and the topological properties. Here, we demonstrate tunable magnetic properties in topological heterostructures over a wide range, from a ferromagnetic phase with a Curie temperature of around 100 K all the way to a paramagnetic phase, while keeping the overall chemical composition the same, by controlling the thickness of nonmagnetic spacer layers between two atomically thin magnetic layers. This work showcases that spacer-layer control is a powerful tool to manipulate magneto-topological functionalities in MTI heterostructures. Furthermore, the interaction between the MTI and the Cr2O3 buffer layers also leads to a robust topological Hall effect surviving up to a record-high 6 T of magnetic field, shedding light on the critical role of interfacial layers in thin-film topological materials.

10.
Nano Lett ; 21(15): 6518-6524, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319741

RESUMO

It is challenging to grow an epitaxial 4-fold compound superconductor (SC) on a 6-fold topological insulator (TI) platform due to the stringent lattice-matching requirement. Here, we demonstrate that Fe(Te,Se) can grow epitaxially on a TI (Bi2Te3) layer due to accidental, uniaxial lattice match, which is dubbed as "hybrid symmetry epitaxy". This new growth mode is critical to stabilizing robust superconductivity with TC as high as 13 K. Furthermore, the superconductivity in this FeTe1-xSex/Bi2Te3 system survives in the Te-rich phase with Se content as low as x = 0.03 but vanishes at Se content above x = 0.56, exhibiting a phase diagram that is quite different from that of the conventional Fe(Te,Se) systems. This unique heterostructure platform that can be formed in both TI-on-SC and SC-on-TI sequences opens a route to unprecedented topological heterostructures.

11.
Nano Lett ; 21(9): 4006-4012, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929867

RESUMO

The origin of strain-induced ferromagnetism, which is robust regardless of the type and degree of strain in LaCoO3 (LCO) thin films, is enigmatic despite intensive research efforts over the past decade. Here, by combining scanning transmission electron microscopy with ab initio density functional theory plus U calculations, we report that the ferromagnetism does not emerge directly from the strain itself but rather from the creation of compressed structural units within ferroelastically formed twin-wall domains. The compressed structural units are magnetically active with the rocksalt-type high-spin/low-spin order. Our study highlights that the ferroelastic nature of ferromagnetic structural units is important for understanding the intriguing ferromagnetic properties in LCO thin films.

12.
Nano Lett ; 20(4): 2907-2915, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32196351

RESUMO

van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration as they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have led to numerous demonstrations of field-effect devices ranging from transistors to triodes. By exploiting the controlled, substitutional doping schemes in covalently bonded, three-dimensional (3D) semiconductors and the passivated surfaces of 2D semiconductors, one can construct devices that can exceed performance metrics of "all-2D" vdW heterojunctions. Here, we demonstrate 2D/3D semiconductor heterojunctions using MoS2 as the prototypical 2D semiconductor laid upon Si and GaN as the 3D semiconductor layers. By tuning the Fermi levels in MoS2, we demonstrate devices that concurrently exhibit over 7 orders of magnitude modulation in rectification ratios and conductance. Our results further suggest that the interface quality does not necessarily affect Fermi level tuning at the junction, opening up possibilities for novel 2D/3D heterojunction device architectures.

13.
Nano Lett ; 19(2): 716-721, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30663307

RESUMO

The search for new topological materials and states of matter is presently at the forefront of quantum materials research. One powerful approach to novel topological phases beyond the thermodynamic space is to combine different topological/functional materials into a single materials platform in the form of superlattices. However, despite some previous efforts there has been a significant gap between theories and experiments in this direction. Here, we provide the first detailed set of experimentally verifiable phase diagrams of topological superlattices composed of archetypal topological insulator, Bi2Se3, and normal insulator, In2Se3, by combining molecular-level materials control, low-temperature magnetotransport measurements, and field theoretical calculations. We show how the electronic properties of topological superlattices evolve with unit-layer thicknesses and utilize the weak antilocalization effect as a tool to gain quantitative insights into the evolution of conducting channels within each set of heterostructures. This orchestrated study opens the door to the possibility of creating a variety of artificial-topological-phases by combining topological materials with various other functional building blocks such as superconductors and magnetic materials.

14.
Nano Lett ; 19(7): 4567-4573, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185718

RESUMO

Quantum anomalous Hall effect (QAHE) can only be realized at extremely low temperatures in magnetically doped topological insulators (TIs) due to limitations inherent with the doping process. In an effort to boost the quantization temperature of QAHE, the magnetic proximity effect in magnetic insulator/TI heterostructures has been extensively investigated. However, the observed anomalous Hall resistance has never been more than several ohms, presumably owing to the interfacial disorders caused by the structural and chemical mismatch. Here, we show that, by growing (BixSb1-x)2Te3 (BST) thin films on structurally and chemically well-matched, ferromagnetic-insulating CrGeTe3 (CGT) substrates, the proximity-induced anomalous Hall resistance can be enhanced by more than an order of magnitude. This sheds light on the importance of structural and chemical matches for magnetic insulator/TI proximity systems.

15.
Nano Lett ; 19(8): 5319-5326, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268341

RESUMO

Composition gradients, or dissimilar ferroelectric bilayers, demonstrate colossal electromechanical figures of merit attributed to the motion of ferroelastic domain walls. Yet, mechanistic understanding of polarization switching pathways that drive ferroelastic switching in these systems remains elusive. Here, the crucial roles of strain and electrostatic boundary conditions in ferroelectric bilayer systems are revealed, which underpin their ferroelastic switching dynamics. Using in situ electrical biasing in the transmission electron microscope (TEM), the motion of ferroelastic domain walls is investigated in a tetragonal (T) Pb(Zr,Ti)O3 (PZT)/rhombohedral (R) PZT epitaxial bilayer system. Atomic resolution electron microscopy, in tandem with phase field simulations, indicates that ferroelastic switching is triggered by predominant nucleation at the triple domain junctions located at the interface between the T/R layers. Furthermore, this interfacial nucleation leads to systematic reversable reorientation of ferroelastic domain walls. Deterministic ferroelastic domain switching, driven by the interfacial strain and electrostatic boundary conditions in the ferroelectric bilayer, provides a viable pathway toward novel design of miniaturized energy-efficient electromechanical devices.

17.
Nano Lett ; 19(11): 7859-7865, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31661617

RESUMO

Two-dimensional (2D) van der Waals (vdW) materials show a range of profound physical properties that can be tailored through their incorporation in heterostructures and manipulated with external forces. The recent discovery of long-range ferromagnetic order down to atomic layers provides an additional degree of freedom in engineering 2D materials and their heterostructure devices for spintronics, valleytronics, and magnetic tunnel junction switches. Here, using direct imaging by cryo-Lorentz transmission electron microscopy we show that topologically nontrivial magnetic-spin states, skyrmionic bubbles, can be realized in exfoliated insulating 2D vdW Cr2Ge2Te6. Due to the competition between dipolar interactions and uniaxial magnetic anisotropy, hexagonally packed nanoscale bubble lattices emerge by field cooling with magnetic field applied along the out-of-plane direction. Despite a range of topological spin textures in stripe domains arising due to pair formation and annihilation of Bloch lines, bubble lattices with single chirality are prevalent. Our observation of topologically nontrivial homochiral skyrmionic bubbles in exfoliated vdW materials provides a new avenue for novel quantum states in atomically thin insulators for magneto-electronic and quantum devices.

18.
Phys Rev Lett ; 123(11): 117201, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573260

RESUMO

Through a combination of experimental measurements and theoretical modeling, we describe a strongly orbital-polarized insulating ground state in an (LaTiO_{3})_{2}/(LaCoO_{3})_{2} oxide heterostructure. X-ray absorption spectra and ab initio calculations show that an electron is transferred from the titanate to the cobaltate layers. The charge transfer, accompanied by a large octahedral distortion, induces a substantial orbital polarization in the cobaltate layer of a size unattainable via epitaxial strain alone. The asymmetry between in-plane and out-of-plane orbital occupancies in the high-spin cobaltate layer is predicted by theory and observed through x-ray linear dichroism experiments. Manipulating orbital configurations using interfacial coupling within heterostructures promises exciting ground-state engineering for realizing new emergent electronic phases in metal oxide superlattices.

19.
Microsc Microanal ; 29(Supplement_1): 422-423, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613202
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA