Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 53(5): 1108-1122.e5, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33128875

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set of biomarker combinations, which were validated by an independent cohort and accurately distinguished and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immunosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers, mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets of COVID-19.


Assuntos
Infecções por Coronavirus/sangue , Infecções por Coronavirus/patologia , Plasma/metabolismo , Pneumonia Viral/sangue , Pneumonia Viral/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , COVID-19 , Infecções por Coronavirus/classificação , Infecções por Coronavirus/metabolismo , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Pandemias/classificação , Pneumonia Viral/classificação , Pneumonia Viral/metabolismo , Proteômica , Reprodutibilidade dos Testes , SARS-CoV-2
2.
Acta Pharmacol Sin ; 45(2): 422-435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816856

RESUMO

Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity. However, Laxiflorin B is present at low levels in herbs; therefore, we adopted a semi-synthetic process for the efficient production of Laxiflorin B to improve the yield. Laxiflorin B induced mitochondria-mediated apoptosis via BAD activation in non-small-cell lung cancer (NSCLC) cells, especially in EGFR mutant subtypes. Transcriptomic analysis suggested that Laxiflorin B inhibits amphiregulin (AREG) and epiregulin (EREG) expression through ERK inhibition, and suppressed the activation of their receptors, ErbBs, via a positive feedback loop. Moreover, mass spectrometry analysis combined with computer simulation revealed that Laxiflorin B binds covalently to Cys-183 in the ATP-binding pocket of ERK1 via the D-ring, and Cys-178 of ERK1 through non-inhibitory binding of the A-ring. In a NSCLC tumor xenograft model in nude mice, Laxiflorin B also exhibited strong tumor suppressive effects with low toxicity and AREG and EREG were identified as biomarkers of Laxiflorin B efficacy. Finally, Laxiflorin B-4, a C-6 analog of Laxiflorin B, exhibited higher binding affinity for ERK1/2 and stronger tumor suppression. These findings provide a new approach to tumor inhibition using natural anticancer compounds.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Simulação por Computador , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Linhagem Celular Tumoral
3.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838582

RESUMO

Mitochondrial dysfunctions underlie the pathogenesis in glioblastoma multiforme (GBM). Comprehensive proteomic profiling of mitochondria-specific changes in human GBM is still insufficient. This study carried out a DIA-MS based proteomic analysis on the mitochondria isolated from human primary GBM and peritumoral tissue (as paired control), and further compared those findings with the transcriptomic datasets. A total of 538 mitochondrion-specific proteins were rigorously confirmed, among which 190 differentially expressed proteins were identified. Co-regulations of the mitochondrial dysfunction pathway networks were observed, including significant up-regulations of mitochondrial translation and apoptosis, as well as down-regulations of OXPHOS and mitochondrial dynamics. Proteins related to FA, AA metabolism and ROS also showed significant variations. Most of these alterations were consistent in trend when compared the proteomics findings with the RNA-Seq datasets, while the changes at protein levels appeared to be more dramatic. Potentially key proteins in GBM were identified, including up-regulated pro-apoptotic protein CASP3, BAX, fatty acid oxidation enzymes CPT1A, CPT2, ACADM, serine-glycine enzymes SHMT2, GATM, ROS-related protein SOD2, GPX1, and CAT; and down-regulated dynamin-related protein MFN1, MFN2, OPA1, and OXPHOS components; and also several differentially expressed ALDH isoforms. This study systematically profiled the mitochondrial dysfunctions by combining proteomic findings and mRNA datasets, which would be a valuable resource to the community for further thorough analyses.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA-Seq , Proteômica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo
4.
Proteomics ; 18(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251827

RESUMO

TBK1, STING, and MDA5 are important players within the antiviral innate immune response network. We mapped the interactome of endogenous TBK1, STING, and MDA5 by affinity enrichment MS in virally infected or uninfected THP-1 cells. Based on quantitative data of more than 2000 proteins and stringent statistical analysis, 58 proteins were identified as high-confidence interactors for at least one of three bait proteins. Our data indicated that TBK1 and MDA5 mostly interacted within preexisting protein networks, while STING interacted with different proteins with different viral infections. Functional analysis was performed on 17 interactors, and six were found to have functions in innate immune responses. We identified TTC4 as a TBK1 interactor and positive regulator of sendai virus-induced innate immunity.


Assuntos
Imunidade Inata , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Domínios e Motivos de Interação entre Proteínas , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Vírus Sendai/isolamento & purificação , Células THP-1 , Replicação Viral
5.
Biochim Biophys Acta ; 1864(12): 1686-1695, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27618760

RESUMO

In pathogenic bacteria, the two-component regulatory systems (TCSs) play important roles in signal transduction and regulation of their pathogenesis. Here, we used quantitative proteomic methods to comparatively analyze functional networks under the control of the RstA/RstB system versus the PhoP/PhoQ system in Salmonella typhimurium. By comparing the proteomic profile from a wild-type strain to that from a ΔrstB strain or a ΔphoPQ strain under a condition known to activate these TCSs, we found that the levels of 159 proteins representing 6.92% of the 2297 proteins identified from the ΔrstB strain and 341 proteins representing 14.9% of the 2288 proteins identified from the ΔphoPQ strain were significantly changed, respectively. Bioinformatics analysis revealed that the RstA/RstB system and the PhoP/PhoQ system coordinated with regard to the regulation of specific proteins as well as metabolic processes. Our observations suggested that the regulatory networks controlled by the PhoP/PhoQ system were much more extensive than those by the RstA/RstB system, whereas the RstA/RstB system specifically regulated expression of the constituents participating in pyrimidine metabolism and iron acquisition. Additional results also suggested that the RstA/RstB system was required for regulation of Salmonella motility and invasion.


Assuntos
Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Humanos , Ferro/metabolismo , Mutação , Proteômica , Pirimidinas/metabolismo , Salmonella typhimurium/patogenicidade , Virulência
6.
Biochim Biophys Acta ; 1864(1): 20-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26472331

RESUMO

SRM (selected reaction monitoring), a tandem mass spectrometry-based method characterized by high repeatability and accuracy, is an effective tool for the quantification of predetermined proteins. In this study, we built a time-scheduled dimethyl-SRM method that can provide the precise relative quantification of 92 proteins in one run. By applying this method to the Salmonella PhoP/PhoQ two-component system, we found that the expression of selected PhoP/PhoQ-activated proteins in response to Mg(2+) concentrations could be divided into two distinct patterns. For the time-course SRM experiment, we found that the dynamics of the selected PhoP/PhoQ-activated proteins could be divided into three distinct patterns, providing a new clue regarding PhoP/PhoQ activation and regulation. Moreover, the results for iron homeostasis proteins in response to Mg(2+) concentrations revealed that the PhoP/PhoQ two-component system may serve as a repressor for iron uptake proteins. And ribosomal protein levels clearly showed a response to different Mg(2+) concentrations and to time.


Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Proteômica/métodos , Salmonella/metabolismo , Espectrometria de Massas em Tandem/métodos , Western Blotting , Relação Dose-Resposta a Droga , Magnésio/farmacologia , Peptídeos/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteoma/metabolismo , Fatores de Tempo
7.
J Basic Microbiol ; 56(7): 801-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26773230

RESUMO

Protein turnover affects protein abundance and phenotypes. Comprehensive investigation of protein turnover dynamics has the potential to provide substantial information about gene expression. Here we report a large-scale protein turnover study in Salmonella Typhimurium during infection by quantitative proteomics. Murine macrophage-like RAW 264.7 cells were infected with SILAC labeled Salmonella. Bacterial cells were extracted after 0, 30, 60, 120, and 240 min. Mass spectrometry analyses yielded information about Salmonella protein turnover dynamics and a software program named Topograph was used for the calculation of protein half lives. The half lives of 311 proteins from intracellular Salmonella were obtained. For bacteria cultured in control medium (DMEM), the half lives for 870 proteins were obtained. The calculated median of protein half lives was 69.13 and 99.30 min for the infection group and the DMEM group, respectively, indicating an elevated protein turnover at the initial stage of infection. Gene ontology analyses revealed that a number of protein functional groups were significantly regulated by infection, including proteins involved in ribosome, periplasmic space, cellular amino acid metabolic process, ion binding, and catalytic activity. The half lives of proteins involved in purine metabolism pathway were found to be significantly shortened during infection.


Assuntos
Proteólise , Proteômica , Infecções por Salmonella/patologia , Salmonella typhimurium/metabolismo , Animais , Linhagem Celular , Marcação por Isótopo , Espectrometria de Massas , Camundongos , Biossíntese de Proteínas , Células RAW 264.7 , Salmonella typhimurium/genética
8.
Huan Jing Ke Xue ; 45(8): 4577-4588, 2024 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-39168677

RESUMO

Groundwater is one of the major water sources for production, living, and agricultural irrigation in the Yinchuan Plain. Owing to the influence of the regional environmental background and long-term effects of human activities, groundwater quality is generally inferior. To deeply analyze the formation mechanism and source of hydrochemical components in groundwater in the Yinchuan Plain, the traditional hydrochemical graphic method and mathematical statistics and principal component analysis-multivariate linear statistical model were used. Based on inorganic component contents of 100 phreatic water samples and 46 confined groundwater samples, the hydrochemical characteristics and quality status, spatial distribution of over-limit toxicological components, and contribution rate of hydrochemical components were analyzed. The results showed that the chemical components of groundwater were controlled by rock weathering and evaporation concentration. Dissolution-enrichment (F1), original geological environment (F2), and human activities(F3) were the principal factors that influenced groundwater hydrochemistry with the contribution rates of 73.67%, 14.45%, and 11.88%, respectively. The major over-limit toxicity indices in groundwater were NO3--N and F-. High NO3--N phreatic water was mainly influenced by agriculture activities, followed by the discharge of domestic sewage. Enrichment of groundwater F- was mainly caused by leaching of F-bearing minerals and cation exchange adsorption.

9.
FEBS J ; 288(17): 5190-5200, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33098359

RESUMO

Up to 10-20% of patients with coronavirus disease 2019 (COVID-19) develop a severe pulmonary disease due to immune dysfunction and cytokine dysregulation. However, the extracellular proteomic characteristics in respiratory tract of these critical COVID-19 patients still remain to be investigated. In the present study, we performed a quantitative proteomic analysis of the bronchoalveolar lavage fluid (BALF) from patients with critical COVID-19 and from non-COVID-19 controls. Our study identified 358 differentially expressed BALF proteins (P < 0.05), among which 41 were significantly changed after using the Benjamini-Hochberg correction (q < 0.05). The up-regulated signaling was found to be mainly involved in inflammatory signaling and response to oxidative stress. A series of increased extracellular factors including Tenascin-C (TNC), Mucin-1 (KL-6 or MUC1), Lipocalin-2 (LCN2), periostin (POSTN), Chitinase 3-like 1 (CHI3L1 or YKL40), and S100A12, and the antigens including lymphocyte antigen 6D/E48 antigen (LY6D), CD9 antigen, CD177 antigen, and prostate stem cell antigen (PSCA) were identified, among which the proinflammatory factors TNC and KL-6 were further validated in serum of another thirty-nine COVID-19 patients and healthy controls, showing high potentials of being biomarkers or therapeutic candidates for COVID-19. This BALF proteome associated with COVID-19 would also be a valuable resource for researches on anti-inflammatory medication and understanding the molecular mechanisms of host response. DATABASE: Proteomic raw data are available in ProteomeXchange (http://proteomecentral.proteomexchange.org) under the accession number PXD022085, and in iProX (www.iprox.org) under the accession number IPX0002429000.


Assuntos
Líquido da Lavagem Broncoalveolar , COVID-19/genética , Proteoma/genética , SARS-CoV-2/genética , Adulto , COVID-19/patologia , COVID-19/virologia , Estado Terminal , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Proteômica , SARS-CoV-2/patogenicidade
10.
J Proteomics ; 212: 103570, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31706944

RESUMO

Olanzapine is commonly used to treat schizophrenia. However, long-term administration of olanzapine causes metabolic side effects, such as insulin resistance (IR), which seriously affects patients' quality of life. Both diagnostic and prognostic markers are urgently needed to increase patient compliance. We applied isobaric tags for relative and absolute quantitation (iTRAQ) labeling combined with 2D LC/MS/MS technology to identify the differentially expressed proteins in olanzapine-induced IR rats. A total of 3194 proteins were identified from rat adipose tissues, and 270 differentially expressed proteins were screened out with a ratio threshold >1.5-fold or <0.67-fold. Based on a bioinformatics analysis and literature search, we selected six candidates (MYH1, MYL2, Cp, FABP4, apoA-IV, and Ywhaz) from a set of 270 proteins and verified these proteins by western blot; the expression of these proteins coincided with the LC-MS/MS results. Finally, the biological roles of FABP4 and apoA-IV, which are two novel IR-related proteins identified in the present study, were verified in 3T3-L1 cells. These data suggest that these two proteins acted on olanzapine-induced IR via the IRS-1/AKT signaling pathway. Our results provide a dataset of potential targets to explore the mechanism in olanzapine-induced IR and reveal the new roles of FABP4 and apoA-IV in olanzapine-induced IR. SIGNIFICANCE: The proteomic analysis of this study revealed the target associated with olanzapine-induced IR and provided relevant insights into the molecular functions, biological processes, and signaling pathways in these targets. Protein MYH1, MYL2, Cp, FABP4, apoA-IV, and Ywhaz may be potential biomarkers, and protein FABP4 and apoA-IV were considered as promising targets in olanzapineinduced IR. Therefore, if the performance of the proposed biomarkers is further confirmed, these proteins can provide powerful targets for exploring the mechanism of olanzapine-induced IR.


Assuntos
Tecido Adiposo/metabolismo , Apolipoproteínas A/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Resistência à Insulina , Olanzapina/toxicidade , Proteômica/métodos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Antipsicóticos/toxicidade , Biomarcadores/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Feminino , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Espectrometria de Massas em Tandem
11.
Front Microbiol ; 10: 1515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333620

RESUMO

Histone-like nucleoid structuring protein (H-NS) in enterobacteria plays an important role in facilitating chromosome organization and functions as a crucial transcriptional regulator for global gene regulation. Here, we presented an observation that H-NS of Salmonella enterica serovar Typhimurium could undergo protein phosphorylation at threonine 13 residue (T13). Analysis of the H-NS wild-type protein and its T13E phosphomimetic substitute suggested that T13 phosphorylation lead to alterations of H-NS structure, thus reducing its dimerization to weaken its DNA binding affinity. Proteomic analysis revealed that H-NS phosphorylation exerts regulatory effects on a wide range of genetic loci including the PhoP/PhoQ-regulated genes. In this study, we investigated an effect of T13 phosphorylation of H-NS that rendered transcription upregulation of the PhoP/PhoQ-activated genes. A lower promoter binding of the T13 phosphorylated H-NS protein was correlated with a stronger interaction of the PhoP protein, i.e., a transcription activator and also a competitor of H-NS, to the PhoP/PhoQ-dependent promoters. Unlike depletion of H-NS which dramatically activated the PhoP/PhoQ-dependent transcription even in a PhoP/PhoQ-repressing condition, mimicking of H-NS phosphorylation caused a moderate upregulation. Wild-type H-NS protein produced heterogeneously could rescue the phenotype of T13E mutant and fully restored the PhoP/PhoQ-dependent transcription enhanced by T13 phosphorylation of H-NS to wild-type levels. Therefore, our findings uncover a strategy in S. typhimurium to fine-tune the regulatory activity of H-NS through specific protein phosphorylation and highlight a regulatory mechanism for the PhoP/PhoQ-dependent transcription via this post-translational modification.

12.
Nat Commun ; 9(1): 3688, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206226

RESUMO

Germline coding variants have not been systematically investigated for pancreatic ductal adenocarcinoma (PDAC). Here we report an exome-wide investigation using the Illumina Human Exome Beadchip with 943 PDAC cases and 3908 controls in the Chinese population, followed by two independent replicate samples including 2142 cases and 4697 controls. We identify three low-frequency missense variants associated with the PDAC risk: rs34309238 in PKN1 (OR = 1.77, 95% CI: 1.48-2.12, P = 5.35 × 10-10), rs2242241 in DOK2 (OR = 1.85, 95% CI: 1.50-2.27, P = 4.34 × 10-9), and rs183117027 in APOB (OR = 2.34, 95% CI: 1.72-3.16, P = 4.21 × 10-8). Functional analyses show that the PKN1 rs34309238 variant significantly increases the level of phosphorylated PKN1 and thus enhances PDAC cells' proliferation by phosphorylating and activating the FAK/PI3K/AKT pathway. These findings highlight the significance of coding variants in the development of PDAC and provide more insights into the prevention of this disease.


Assuntos
Povo Asiático/genética , Exoma/genética , Predisposição Genética para Doença , Taxa de Mutação , Mutação de Sentido Incorreto/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Proliferação de Células/genética , Humanos , Neoplasias Pancreáticas/patologia , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Proteína Quinase C/genética , Fatores de Risco , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA