Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(2): 392-402, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350156

RESUMO

A large amount of copper (Cu) used in production activities can lead to the enrichment of Cu in the environment, which can cause toxicity to animals. However, the toxicity mechanism of Cu on the cerebrum is still uncertain. Hence, a total of 240 chickens were separated into four groups in this study to reveal the potential connection between mitophagy and endoplasmic reticulum (ER) stress-mediated apoptosis in the chicken cerebrum in the case of excess Cu exposure. The cu exposure situation was simulated by diets containing various levels of copper (11 mg/kg, control group; 110 mg/kg, group I; 220 mg/kg, group II and 330 mg/kg, group III) for 49 days. The results of histology showed that vacuolar degeneration was observed in the treated groups, and the mitochondria swell and autophagosomes formation were found under excess Cu treatment. Additionally, the expression of mitophagy (PINK1, Parkin, LC3I, LC3II and p62) and ER stress (GRP78, PERK, ATF6, IRE1α, XBP1, CHOP, and JNK) indexes were significantly upregulated under excess Cu exposure. Furthermore, the mRNA and protein expression of Bcl-2 were decreased, while Bak1, Bax, Caspase12, and Caspase3 were increased compared to the control group. In summary, this study demonstrated that an overdose of Cu could induce mitophagy and ER stress-mediated apoptosis in the chicken cerebrum. These findings revealed an important potential connection between Cu toxicity and cerebrum damage, which provided a new insight into Cu neurotoxicity.


Assuntos
Cérebro , Cobre , Estresse do Retículo Endoplasmático , Mitofagia , Animais , Apoptose , Galinhas , Cobre/toxicidade , Endorribonucleases , Proteínas Serina-Treonina Quinases
2.
Ecotoxicol Environ Saf ; 220: 112395, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102394

RESUMO

Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cobre/toxicidade , Hipotálamo/efeitos dos fármacos , Metais Pesados/toxicidade , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Cobre/metabolismo , Citocromos c/metabolismo , Exposição Ambiental , Hipotálamo/metabolismo , Metais Pesados/metabolismo , Mitocôndrias/metabolismo , Modelos Animais , Transdução de Sinais , Suínos , Proteína X Associada a bcl-2/metabolismo
3.
Ecotoxicol Environ Saf ; 213: 112040, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33610943

RESUMO

Among different synthetic compounds copper (Cu) is persistently and frequently used as growth promoter, antibacterial, antifungal and antiparasitic agent and has become common environmental pollutant. Therefore, this study explores the cardio-toxic effects of control group (10 mg/kg bw Cu) and treatment group (125 and 250 mg/kg bw Cu), and it association with process of autophagy and metabolomics in myocardium of pigs kept in three different experimental treatments for a period of 80 days. The results of serum biochemical parameters showed a significantly increase in creatinine kinase (CK), creatine kinase-MB (CK-MB), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and aspartate aminotransferase (AST) in pigs exposed to 125 mg/kg bw and 250 mg/kg bw Cu. Meanwhile, the severe structural abnormalities in cardiomyocytes were found when exposed to 250 mg/kg Cu at day 80. In addition, the mRNA and proteins (Beclin1, ATG5 and LC3II) expression levels were significantly increased and p62 was significantly decreased in cardiomyocytes exposed to 250 mg/kg Cu at day 80 of the trial. Further, UPLC-QTOF/MS technique showed that 7 metabolites were up-regulated and 37 metabolites were down-regulated in cardiomyocytes after 250 mg/kg Cu treatment, with a principal impact on the metabolic pathways including glycerophospholipid metabolism, one carbon pool by folate, fatty acid elongation and fatty acid degradation, which were related to autophagy. Overall, our study identified the autophagy processes and metabolites in metabolic pathways in Cu-induced myocardium injury, which provided useful evidence of myocardium toxicity caused by Cu exposure via metabolomics and multiple bioanalytic methods.


Assuntos
Autofagia/efeitos dos fármacos , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Coração/efeitos dos fármacos , Animais , Poluentes Ambientais/metabolismo , Coração/fisiologia , Redes e Vias Metabólicas , Metabolômica , Miocárdio/metabolismo , Suínos
4.
Ecotoxicol Environ Saf ; 218: 112284, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945902

RESUMO

Copper poses huge environmental and public health concerns due to its widespread and persistent use in the past several decades. Although it is well established that at higher levels copper causes nephrotoxicity, the exact mechanisms of its toxicity is not fully understood. Therefore, this experimental study for the first time investigates the potential molecular mechanisms including transcriptomics, metabolomics, serum biochemical, histopathological, cell apoptosis and autophagy in copper-induced renal toxicity in pigs. A total of 14 piglets were randomly assigned to two group (7 piglets per group) and treated with a standard diet (11 mg CuSO4 per kg of feed) and a high copper diet (250 mg CuSO4 per kg of feed). The results of serum biochemical tests and renal histopathology suggested that 250 mg/kg CuSO4 in the diet significantly increased serum creatinine (CREA) and induced renal tubular epithelial cell swelling. Results on transcriptomics and metabolomics showed alteration in 804 genes and 53 metabolites in kidneys of treated pigs, respectively. Combined analysis of transcriptomics and metabolomics indicated that different genes and metabolism pathways in kidneys of treated pigs were involved in glycerophospholipids metabolism and glycosphingolipid metabolism. Furthermore, copper induced mitochondrial apoptosis characterized by increased bax, bak, caspase 3, caspase 8 and caspase 9 expressions while decreased bcl-xl and bcl2/bax expression. Exposure to copper decreased the autophagic flux in terms of increased number of autophagosomes, beclin1 and LC3b/LC3a expression and p62 accumulation. These results indicated that the imbalance of glycosphingolipid metabolism, the impairment of autophagy and increase mitochondrial apoptosis play an important role in copper induced renal damage and are useful mechanisms to understand the mechanisms of copper nephrotoxicity.

5.
Ecotoxicol Environ Saf ; 223: 112587, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352579

RESUMO

Cu is a metallic element that widely spread over in the environment, which have raised wide concerns about the potential toxic effects and public health threat. The objective of this study aimed to investigate the impression of copper (Cu)-triggered toxicity on mitochondrial dynamic, oxidative stress, and unfolded protein response (UPRmt) in fundic gland of pigs. Weaned pigs were randomly distributed into three groups, fed with different Cu of 10 mg/kg (control group), 125 mg/kg (group I), and 250 mg/kg (group Ⅱ). The trial persisted for 80 days and the fundic gland tissues were collected for further researches. Moreover, the markers participated to mitochondrial dynamic, UPRmt,and oxidative stress in fundic gland were determined. Results revealed that vacuolar degeneration were observed in the treated groups contrast with control group, and the Cu level was boosted with the increasing intake of Cu. Besides that, the levels of CAT, TRX, H2O2, and G6PDH were reduced in group Ⅰ and group Ⅱ, the mRNA levels of NRF2, HO-1, SOD-1, CAT, SOD-2, GSR, GPX1, GPX4, and TRX in the treated groups were promoted contrast to control group. Furthermore, the protein expression of KEAP1 was dramatically decreased, and the protein expression of NRF2, TRX and HO-1 were markedly enhanced in group Ⅰ and Ⅱ at 80 days. Moreover, the mRNA and protein expression levels of MFN1, MFN2, and OPA1 down-regulated and protein level of DRP1 was increased with the adding levels of Cu. Nevertheless, the UPRmt-related mRNA levels of CLPP, HTRA-2, CHOP, HSP10, and HSP60 were enhanced dramatically in Cu treatment group compared with control group. In general, our current study demonstrated that excessive absorption of Cu in fundic gland were related with stimulating UPRmt, oxidative stress, and the NRF2 interceded antioxidant defense. These results could afford an updated evidence on molecular theory of Cu-invited toxicity.


Assuntos
Cobre , Dinâmica Mitocondrial , Animais , Cobre/toxicidade , Peróxido de Hidrogênio , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Suínos , Resposta a Proteínas não Dobradas
6.
J Anim Physiol Anim Nutr (Berl) ; 105(5): 908-915, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33713505

RESUMO

The purpose of this study was to investigate the effects of diet type (normal or low Ca and P diets) and 25(OH)D3 supplementation (with or with not 2000 IU/kg 25(OH)D3 ) during late gestation on the serum biochemistry and reproductive performance of aged sows and newborn piglets. A total of 40 sows, which are at their 7th parity, were divided into four groups: control group (standard diet), low Ca group, 25(OH)D3 group and low Ca plus 25(OH)D3 group respectively (10 in each group). The blood of sows on day 100 and 114 of gestation and newborn piglets was collected for serum biochemical analyses. Results showed that the reproductive performance of sows was not influenced by diet type or 25(OH)D3 supplementation (p > 0.05). And the addition of 25(OH)D3 to diet low Ca group caused that the content of serum TG in sows on day 100 of gestation was not different from that of the control group (p > 0.05). The addition of 25(OH)D3 significantly decreases the content of serum TG in sows on day 114 of gestation (p < 0.05). The addition of 25(OH)D3 significantly increased the content of serum UREA and CREA in newborn piglets (p < 0.05). Overall, feeding 2000 IU/kg 25(OH)D3 to aged sows at late gestation had no effects on reproductive performance, but partly contributed to keeping serum TG balance in sows and may indicate increased pressure on kidneys in newborn piglets.


Assuntos
Ração Animal , Dieta , Ração Animal/análise , Animais , Animais Recém-Nascidos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Lactação , Paridade , Gravidez , Suínos , Vitamina D/análogos & derivados
7.
Ecotoxicol Environ Saf ; 206: 111366, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010598

RESUMO

To explore the effects of copper (Cu) on energy metabolism and AMPK-mTOR pathway-mediated autophagy in kidney, a total of 240 one-day-old broiler chickens were randomized into four equal groups and fed on the diets with different levels of Cu (11, 110, 220, and 330 mg/kg) for 49 d. Results showed that excess Cu could induce vacuolar degeneration and increase the number of autophagosomes in kidney, and the adenosine triphosphate (ATP) level and mRNA levels of energy metabolism-related genes were decreased with the increasing dietary Cu level. Moreover, immunohistochemistry and immunofluorescence showed that the positive expressions of Beclin1 and LC3-II were mainly located in cytoplasm of renal tubular epithelial cells and increased significantly with the increasing levels of Cu. The mRNA levels of Beclin1, Atg5, LC3-I, LC3-II, Dynein and the protein levels of Beclin1, Atg5, LC3-II/LC3-I and p-AMPKα1/AMPKα1 were markedly elevated in treated groups compared with control group (11 mg/kg Cu). However, the mRNA and protein levels of p62 and p-mTOR/mTOR were significantly decreased with the increasing levels of Cu. These results suggest that impaired energy metabolism induced by Cu may lead to autophagy via AMPK-mTOR pathway in kidney of broiler chickens.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Cobre/toxicidade , Metabolismo Energético/efeitos dos fármacos , Rim/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Galinhas , Exposição Dietética/efeitos adversos , Exposição Dietética/análise , Metabolismo Energético/genética , Rim/metabolismo , Rim/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Ecotoxicol Environ Saf ; 200: 110715, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450432

RESUMO

Copper (Cu) is a necessary trace mineral due to its biological activity. Excessive Cu can induce inflammatory response in humans and animals, but the underlying mechanism is still unknown. Here, 240 broilers were used to study the effects of excessive Cu on oxidative stress and NF-κB-mediated inflammatory responses in immune organs. Chickens were fed with diet containing different concentrations of Cu (11, 110, 220, and 330 mg of Cu/kg dry matter). The experiment lasted for 49 days. Spleen, thymus, and bursa of Fabricius (BF) on day 49 were collected for histopathological observation and assessment of oxidative stress status. Additionally, the mRNA and protein levels of NF-κB and inflammatory cytokines were also analyzed. The results indicated that excess Cu could increase the number and area of splenic corpuscle as well as the ratio of cortex and medulla in thymus and BF. Furthermore, excessive Cu intake could decrease activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); but increase contents of malondialdehyde (MDA), TNF-α, IL-1, IL-1ß; up-regulate mRNA levels of TNF-α, IFN-γ, IL-1, IL-1ß, IL-2, iNOS, COX-2, NF-κB and protein levels of TNF-α, IFN-γ, NF-κB, p-NF-κB in immune organs. In conclusion, excessive Cu could cause pathologic changes and induce oxidative stress with triggered NF-κB pathway, and might further regulate the inflammatory response in immune organs of chicken.


Assuntos
Galinhas/imunologia , Cobre/toxicidade , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Bolsa de Fabricius/enzimologia , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/metabolismo , Bolsa de Fabricius/patologia , Catalase/metabolismo , Galinhas/genética , Galinhas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/genética , Inflamação/metabolismo , Malondialdeído/metabolismo , NF-kappa B/genética , Baço/enzimologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Superóxido Dismutase/metabolismo , Timo/enzimologia , Timo/imunologia , Timo/metabolismo , Timo/patologia
9.
Ecotoxicol Environ Saf ; 190: 110158, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918257

RESUMO

Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl2 (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cobre/toxicidade , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Rim/metabolismo , Rim/patologia , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Superóxido Dismutase/metabolismo
10.
Ecotoxicol Environ Saf ; 174: 110-119, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822667

RESUMO

The purpose of this study was to investigate the effects of copper (Cu) on hepatocyte pyroptosis and the relationship between pyroptosis and apoptosis in the mechanisms of Cu toxicity. Primary chicken hepatocytes were cultured in different concentrations of Cu sulfate (CuSO4) (0, 10, 50, and 100 µM), N-acetylcysteine (NAC) (1 mM), and Z-YVAD-fluoromethylketone (Z-YVAD-FMK) (10 µM) for 24 h, and the combination of Cu and NAC or Z-YVAD-FMK for 24 h. Cellular morphology and function, cell viability, mitochondria membrane potential (MMP), apoptosis rate, mRNA expression of pyroptosis-related and apoptosis-related genes, and Caspase-1, Caspase-3 proteins expression were determined. These results indicated that Cu markedly induced the mRNA expression of pyroptosis-related genes (Caspase-1, IL-1ß, IL-18, and NLRP3) and Caspase-1 protein expression. Furthermore, contents of Caspase-1, IL-1ß, and IL-18 in the supernatant fluid of culture hepatocytes were significantly increased in hepatocytes. NAC relieved excess Cu-caused the changes of above genes and proteins. Additionally, Z-YVAD-FMK, caspase-1 inhibitor, which attenuated Cu-induced the increased lactic dehydrogenase (LDH), aspartate amino transferase (AST), alanine aminotransferase (ALT) activities. Furthermore, treatment with Cu and Z-YVAD-FMK could down-regulate the mRNA levels of Caspase-3, Bak1, Bax, and CytC and Caspase-3 protein expression, up-regulate the mRNA expression of Bcl2, increase the MMP and reduce cell apoptosis compared to treatment with Cu in hepatocytes. Collectively, these finding evidenced that excess Cu induced pyroptosis by generating ROS in hepatocytes, and the inhibition of Caspase-1-dependent pyroptosis might attenuate Cu-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 1/fisiologia , Cobre/toxicidade , Hepatócitos/efeitos dos fármacos , Piroptose , Animais , Caspase 3/metabolismo , Sobrevivência Celular , Galinhas , Interleucina-1beta/metabolismo
11.
Ecotoxicol Environ Saf ; 185: 109710, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563750

RESUMO

The purpose of this research was to discuss the effects of copper (Cu)-induced toxicity on oxidative stress and autophagy in hypothalamus of broilers. In this study, 240 one-day-old broilers were randomly divided into 4 groups and the contents of dietary Cu in 4 groups were 11 mg/kg (control group), 110 mg/kg (group I), 220 mg/kg (group II), and 330 mg/kg (group III). The experiment lasted for 49 days and the hypothalamus tissues were collected for histological observation and detection of Cu content. Additionally, the indicators related to oxidative stress in hypothalamus were determined. Moreover, the mRNA expression levels of autophagy-related genes and the protein expression levels of Beclin1, LC3-II/LC3-I, and p62 in hypothalamus were measured. Results showed that the treated groups were observed vacuolar degeneration in hypothalamus compared to control group, and the Cu content in hypothalamus was increased with the increase of dietary Cu. Furthermore, the activities of SOD, CAT, T-AOC were increased in group I and group II and then decreased in group III, and the content of MDA and the mRNA levels of Nrf2, HO-1, SOD-1, CAT, GCLC, GCLM, and GST in treated groups were elevated compared to control group. Moreover, the mRNA expression levels of Beclin1, Atg5, LC3-I, LC3-II and the protein expression levels of Beclin1 and LC3-II/LC3-I up-regulated significantly with the increasing levels of Cu. However, the mRNA expression levels of p62 and mTOR and the protein expression level of p62 down-regulated remarkably. Taken together, our present study evidenced that excessive intake of Cu could induce oxidative stress and autophagy in hypothalamus of broilers.


Assuntos
Autofagia/efeitos dos fármacos , Galinhas , Cobre/toxicidade , Poluentes Ambientais/toxicidade , Hipotálamo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Galinhas/metabolismo , Cobre/metabolismo , Dieta , Exposição Dietética/análise , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Distribuição Aleatória
12.
Biol Trace Elem Res ; 202(4): 1711-1721, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37474886

RESUMO

Copper (Cu) is one of the most significant trace elements in the body, but it is also a widespread environmental toxicant health. Ferroptosis is a newly identified programmed cell death, which involves various heavy metal-induced organ toxicity. Nevertheless, the role of ferroptosis in Cu-induced hepatotoxicity remains poorly understood. In this study, we found that 330 mg/kg Cu could disrupt the liver structure and cause characteristic morphological changes in mitochondria associated with ferroptosis. Additionally, Cu treatment increased MDA (malondialdehyde) and LPO (lipid peroxide) production while reducing GSH (reduced glutathione) content and GCL (glutamate cysteine ligase) activity. However, it is noticeable that there were no appreciable differences in liver iron content and key indicators of iron metabolism. Meanwhile, our further investigation found that 330 mg/kg Cu-exposure changed multiple ferroptosis-related indicators in chicken livers, including inhibition of the expression of SLC7A11, GPX4, FSP1, and COQ10B, whereas enhances the levels of ACLS4, LPCAT3, and LOXHD1. Furthermore, the changes in the expression of NCOA4, TXNIP, and Nrf2/Keap1 signaling pathway-related genes and proteins also further confirmed 330 mg/kg Cu exposure-induced ferroptosis. In conclusion, our results indicated that ferroptosis may play essential roles in Cu overload-induced liver damage, which offered new insights into the pathogenesis of Cu-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Ubiquinona/análogos & derivados , Animais , Peroxidação de Lipídeos , Cobre/toxicidade , Galinhas , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Ferro
13.
Biomed Mater ; 19(4)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838692

RESUMO

At present, wound dressings in clinical applications are primarily used for superficial skin wounds. However, these dressings have significant limitations, including poor biocompatibility and limited ability to promote wound healing. To address the issue, this study used aldehyde polyethylene glycol as the cross-linking agent to design a carboxymethyl chitosan-methacrylic acid gelatin hydrogel with enhanced biocompatibility, which can promote wound healing and angiogenesis. The CSDG hydrogel exhibits acid sensitivity, with a swelling ratio of up to 300%. Additionally, it exhibited excellent resistance to external stress, withstanding pressures of up to 160 kPa and self-deformation of 80%. Compared to commercially available chitosan wound gels, the CSDG hydrogel demonstrates excellent biocompatibility, antibacterial properties, and hemostatic ability. Bothin vitroandin vivoresults showed that the CSDG hydrogel accelerated blood vessel regeneration by upregulating the expression of CD31, IL-6, FGF, and VEGF, thereby promoting rapid healing of wounds. In conclusion, this study successfully prepared the CSDG hydrogel wound dressings, providing a new approach and method for the development of hydrogel dressings based on natural macromolecules.


Assuntos
Materiais Biocompatíveis , Quitosana , Gelatina , Hidrogéis , Metacrilatos , Cicatrização , Quitosana/química , Quitosana/análogos & derivados , Cicatrização/efeitos dos fármacos , Gelatina/química , Hidrogéis/química , Animais , Metacrilatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Camundongos , Humanos , Polietilenoglicóis/química , Antibacterianos/química , Antibacterianos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Bandagens , Masculino , Reagentes de Ligações Cruzadas/química , Regeneração/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Teste de Materiais , Ratos
14.
Tissue Cell ; 90: 102515, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39146674

RESUMO

With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.


Assuntos
Acetilcisteína , Diabetes Mellitus Tipo 1 , Retículo Endoplasmático , Insulina , Miocárdio , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/complicações , Insulina/farmacologia , Insulina/metabolismo , Cães , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Acetilcisteína/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-39089429

RESUMO

Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.


Assuntos
Galinhas , Retículo Endoplasmático , Ferroptose , Hepatócitos , Hesperidina , Animais , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Ferroptose/efeitos dos fármacos , Hesperidina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Herbicidas/toxicidade
16.
J Neuropathol Exp Neurol ; 82(9): 774-786, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37533277

RESUMO

Diabetic encephalopathy is a common complication of type 1 diabetes. However, there have been few studies on cognitive impairment and hippocampal damage in type 1 diabetes mellitus (T1DM) using dogs as experimental animals. To investigate the effects of diabetes on the CNS, 40 adult beagles were divided into streptozotocin/alloxan type 1 diabetes model and control groups. The duration of diabetes in the model group was 120 days. A cognitive dysfunction scale was used to assess cognitive function. Hematoxylin and eosin and Golgi-Cox staining methods were used to observe morphological damage to the hippocampus. Transcriptomics was used to investigate differential gene expression in the hippocampus. The results showed that the cognitive dysfunction score of the model group was significantly higher than that of the control group. In addition, the number of normal neurons, the complexity of dendritic morphology, and the density of dendritic spines were decreased in the hippocampus of diabetic dogs. A total of 672 differentially expressed genes (DEGs) were identified, 289 of which were upregulated, and 383 were downregulated. Modified genes included DBH, IGFBP2, AVPR1A, and DRAXIN. In conclusion, type 1 diabetic dogs exhibit cognitive dysfunction. The DEGs were mainly enriched in metabolic, PI3K-Akt signaling, and neuroactive ligand-receptor interaction pathways.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Cães , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Perfilação da Expressão Gênica , Hipocampo/metabolismo
17.
Life Sci ; 329: 121975, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495077

RESUMO

AIMS: Type 1 diabetes mellitus (T1DM) has been linked to the occurrence of skeletal muscle atrophy. Insulin monotherapy may lead to excessive blood glucose fluctuations. N-acetylcysteine (NAC), a clinically employed antioxidant, possesses cytoprotective, anti-inflammatory, and antioxidant properties. The objective of our study was to evaluate the viability of NAC as a supplementary treatment for T1DM, specifically regarding its therapeutic and preventative impacts on skeletal muscle. MAIN METHODS: Here, we used beagles as T1DM model for 120d to explore the mechanism of NRF2/HO-1-mediated skeletal muscle oxidative stress and apoptosis and the therapeutic effects of NAC. Oxidative stress and apoptosis related factors were analyzed by immunohistochemistry, immunofluorescence, western blotting, and RT-qPCR assay. KEY FINDINGS: The findings indicated that the co-administration of NAC and insulin led to a reduction in creatine kinase levels, preventing weight loss and skeletal muscle atrophy. Improvement in the reduction of muscle fiber cross-sectional area. The expression of Atrogin-1, MuRF-1 and MyoD1 was downregulated, while Myh2 and MyoG were upregulated. In addition, CAT and GSH-Px levels were increased, MDA levels were decreased, and redox was maintained at a steady state. The decreased of key factors in the NRF2/HO-1 pathway, including NRF2, HO-1, NQO1, and SOD1, while KEAP1 increased. In addition, the apoptosis key factors Caspase-3, Bax, and Bak1 were found to be downregulated, while Bcl-2, Bcl-2/Bax, and CytC were upregulated. SIGNIFICANCE: Our findings demonstrated that NAC and insulin mitigate oxidative stress and apoptosis in T1DM skeletal muscle and prevent skeletal muscle atrophy by activating the NRF2/HO-1 pathway.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Cães , Animais , Antioxidantes/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína X Associada a bcl-2/metabolismo , Transdução de Sinais , Estresse Oxidativo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Insulinas/metabolismo , Insulinas/farmacologia
18.
Vet Res Commun ; 47(4): 2027-2040, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405676

RESUMO

Copper (Cu), an omnipresent environmental pollutant, can cause potential harm to the public and ecosystems. In order to study the cardiotoxicity caused by Cu, molecular biology techniques were used to analyze the effect of Cu on ER stress-mediated cardiac apoptosis. In vivo investigation, 240 1-day-old chickens were fed with Cu (11, 110, 220, and 330 mg/kg) diet for 7 weeks. The consequence showed that high-Cu can induce ER stress and apoptosis in heart tissue. The vitro experiments, the Cu treatment for 24 h could provoke ultrastructural damage and upregulate the apoptosis rate. Meanwhile, GRP78, GRP94, eIF2α, ATF6, XBP1, CHOP, Bax, Bak1, Bcl2, Caspase-12 and Caspase-3 genes levels, and GRP78, GRP94 and Caspase-3 proteins levels were increased, which indicated that ER stress and apoptosis in cardiomyocytes. But the mRNA level of Bcl2 were decreased after Cu exposure. Conversely, Cu-induced ER stress-mediated apoptosis can be alleviated by treatment with 4-PBA. These findings generally showed that Cu exposure can contribute to ER stress-mediated apoptosis in chicken myocardium, which clarifies the important mechanism link between ER stress and apoptosis, and provides a new perspective for Cu toxicology.


Assuntos
Galinhas , Cobre , Animais , Cobre/toxicidade , Galinhas/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Chaperona BiP do Retículo Endoplasmático , Ecossistema , Miocárdio/metabolismo , Apoptose , Miócitos Cardíacos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
19.
Life Sci ; 313: 121278, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521547

RESUMO

Diabetic nephropathy (DN) is a major complication of type 1 diabetes mellitus, and hyperglycemia and hypertension are the main risk factors for the development of DN. N-Acetyl-Cysteine (NAC) has a variety of effects, interfering with the production and scavenging of free radicals and regulating the metabolic activity of tissue cells. However, the efficacy of NAC on DN treatment is unclear. Thus, this study investigated the protective mechanism of NAC combined with insulin on renal injury in dogs with DN. The forty dogs were selected and divided into control group, DM group, INS group, INS + NAC group and NAC group to establish the model for a trial period of 4 months. The results revealed that INS + NAC was effective in reducing and stabilizing blood glucose levels. Biochemical results showed that INS + NAC treatment significantly regulated the stability of UREA, CREA and fructosamine indicators. Meanwhile, histopathology staining showed significant glomerular wrinkling and fibrosis in the DM group, which could be reversed after INS + NAC treatment. In addition, INS + NAC could restore mitochondria homeostasis by upregulating the levels of mitochondrial fission (MFN1, MFN2 and OPA1) and inhibiting of mitochondrial fusion (DRP1, FIS1 and MFF) related indicators. Further studies revealed that INS + NAC regulated the expression levels of renal BNIP3, NIX and FUNDC1 in the DM group, thereby alleviating mitophagy. Collectively, these results suggested that NAC combined with insulin protects DN by regulating the mitochondrial dynamics and FUNDC1-mediated mitophagy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insulinas , Animais , Cães , Acetilcisteína/farmacologia , Nefropatias Diabéticas/patologia , Insulinas/farmacologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia
20.
Life Sci ; 322: 121656, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011874

RESUMO

AIMS: Diabetic nephropathy (DN) is known as a major microvascular complication in type 1 diabetes. Endoplasmic reticulum (ER) stress and pyroptosis play a critical role in the pathological process of DN, but their mechanism in DN has been litter attention. MAIN METHODS: Here, we firstly used large mammal beagles as DN model for 120 d to explored the mechanism of endoplasmic reticulum stress-mediated pyroptosis in DN. Meanwhile, 4-Phenylbutytic acid (4-PBA) and BYA 11-7082 were added in the MDCK (Madin-Daby canine kidney) cells by high glucose (HG) treatment. ER stress and pyroptosis related factors expression levels were analyzed by immunohistochemistry, immunofluorescence, western blotting, and quantitative real-time PCR assay. KEY FINDINGS: We identified that glomeruli atrophy, renal capsules were increased, and renal tubules thickened in diabetes. Masson and PAS staining resulted showed that the collagen fibers and glycogen were accumulated in kidney. Meanwhile, the ER stress and pyroptosis-related factors were significantly activated in vitro. Importantly, 4-PBA significantly inhibited the ER stress, which also alleviated the HG-induced pyroptosis in MDCK cells. Furthermore, BYA 11-7082 could reduce the expression levels of NLRP3 and GSDMD genes and proteins. SIGNIFICANCE: These data provide evidence for ER stress contributes to pyroptosis through NF-κΒ/ΝLRP3 pathway in canine type 1 diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Cães , Nefropatias Diabéticas/metabolismo , NF-kappa B/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse do Retículo Endoplasmático , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA