RESUMO
3-nitropropionic acid (3-NPA), a toxic metabolite produced by mold, is mainly found in moldy sugarcane. 3-NPA inhibits the activity of succinate dehydrogenase that can induce oxidative stress injury in cells, reduce ATP production and induce oxidative stress in mouse ovaries to cause reproductive disorders. Ursolic acid (UA) has a variety of biological activities and is a pentacyclic triterpene compound found in many plants. This experiment aimed to investigate the cytotoxicity of 3-NPA during mouse oocyte in vitro maturation and the protective effects of UA on oocytes challenged with 3-NPA. The results showed that UA could alleviate 3-NPA-induced oocyte meiotic maturation failure. Specifically, 3-NPA induced a decrease in the first polar body extrusion rate of oocytes, abnormal distribution of cortical granules, and an increase in the proportion of spindle abnormalities. In addition, 3-NPA caused mitochondrial dysfunction and induced oxidative stress, including decreases in the GSH, mitochondrial membrane potential and ATP levels, and increases in the ROS levels, and these effects led to apoptosis and autophagy. The addition of UA could significantly improve the adverse effects caused by 3-NPA. In general, our data show that 3-NPA affects the normal development of oocytes during the in vitro culture, and the addition of UA can effectively repair the damage caused by 3-NPA to oocytes.
Assuntos
Meiose , Nitrocompostos , Oócitos , Estresse Oxidativo , Propionatos , Triterpenos , Ácido Ursólico , Animais , Nitrocompostos/toxicidade , Propionatos/toxicidade , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Feminino , Meiose/efeitos dos fármacos , Camundongos , Triterpenos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Autofagia/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Camundongos Endogâmicos ICRRESUMO
IsoliQuirtigenin (ILG) has been widely studied in somatic cells and tissues, but less in reproductive development. It is a kind of widely used food additive. In this study, it was found that ILG could significantly increase the levels of ROS,GSH and MMP in mouse oocytes (P < 0.01). In order to explore the cause of this phenomenon, it was found that the abnormal distribution of mitochondria and ATP synthesis levels were significantly increased (P < 0.05). At this time, we made a reasonable hypothesis that ILG affected mitochondrial function. In subsequent studies, it was found that the endogenous ROS accumulation level in mitochondria was significantly increased. After continuous RT-PCR screening, it was found that the expression of Nrf2 was significantly inhibited (P < 0.01). Its upstream and downstream FOXO3 GPX1, CAT, SOD2, SIRT1 gene also appear different degree of significant change (P < 0.05), in which the lower expression of NADP + (P < 0.05) illustrates the mitochondrial ATP synthesis electronic chain were suppressed, it also has the reason, By inhibiting electron chain and ATP synthesis, ILG leads to oocyte apoptosis and initiation of autophagy, reducing oocyte and its subsequent developmental potential.
Assuntos
Chalcona/análogos & derivados , Glucosídeos , Doenças Mitocondriais , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Espécies Reativas de Oxigênio/metabolismo , Oócitos , Trifosfato de Adenosina/metabolismoRESUMO
To investigate the effects of limonin (Lim) on oxidative stress and early apoptosis in bovine oocytes during in vitro maturation (IVM), different concentrations of Lim (0, 10, 20, 50 µmol/L) were added to bovine IVM medium. Oocyte maturation rates and development 24 h after in vitro fertilization (IVF) were examined to determine the optimal Lim concentration. The optimal Lim concentration was added to the IVM medium, and 0 µmol/L Lim was used as the control. Immunofluorescence staining was used to detect the abnormal rate of spindle assembly, reactive oxygen species (ROS), glutathione (GSH), mitochondrial membrane potential (MMP) levels, mitochondrial distribution, and the fluorescence intensity of cathepsin B (CB)-active LC3 protein. RTâqPCR was used to detect the mRNA expression levels of antioxidant-, apoptosis- and autophagy-related genes in oocytes. The total number of blastocysts and the proportion of apoptotic cells among blastocysts were detected. The results showed that the PBI ejection rate, cleavage rate and blastocyst rate of bovine oocytes in the 20 µmol/L Lim group were significantly higher than those in the control group (P < 0.05). Compared with those in the control group, ROS levels, abnormal mitochondrial distribution, the proportion of abnormal spindle assembly, CB activity and LC3 protein fluorescence intensity of oocytes in the 20 µmol/L Lim group were significantly decreased (P < 0.05), and GSH and MMP levels were significantly increased (P < 0.05). The expression of antioxidant genes (Prdx3, Prdx6, Sirt1) and antiapoptotic genes (Bcl-xl, Survivin) were significantly upregulated (P < 0.05), and the expression levels of proapoptotic genes (Caspase-4, BAX) and autophagy-related genes (LC3) were significantly downregulated (P < 0.05). The total number of cells among in vitro fertilized embryos was significantly increased (P < 0.05), and the apoptosis rate of blastocysts was significantly decreased (P < 0.05). Here, we show that Lim exerts positive effects on bovine oocyte IVM by regulating REDOX homeostasis, reducing spindle damage and enhancing mitochondrial function during IVM, thereby inhibiting oocyte apoptosis and autophagy.