Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2304560, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544918

RESUMO

Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2 O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.

2.
ACS Infect Dis ; 10(6): 1890-1895, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38738652

RESUMO

Currently used visible light catalysts either operate with high-power light sources or require prolonged periods of time for catalytic reactions. This presents a limitation regarding facile application in indoor environments and spaces frequented by the public. Furthermore, this gives rise to elevated power consumption. Here, we enhance photocatalytic performance with blue TiO2 and WO3 complexes covalently coupled through an organic molecule, 3-mercaptopropionic acid, under indoor light. Antibacterial experiments against 108 CFU/mL Escherichia coli (E. coli) suspensions were conducted under indoor light exposure conditions. They showed a sterilization effect of almost 90% within 70 min and nearly 100% after 110 min. The complex generates reactive oxygen species (ROS), such as •OH and O2•-, under natural air conditions. We also showed that h+ and •OH are important for sterilizing E. coli using common scavengers. This research highlights the potential of these complexes to generate ROS, effectively playing a crucial role in antibacterial effects under indoor light.


Assuntos
Antibacterianos , Escherichia coli , Luz , Espécies Reativas de Oxigênio , Titânio , Tungstênio , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Tungstênio/química , Tungstênio/farmacologia , Catálise , Espécies Reativas de Oxigênio/metabolismo , Óxidos/farmacologia , Óxidos/química , Testes de Sensibilidade Microbiana
3.
ACS Appl Mater Interfaces ; 15(35): 41708-41719, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37621110

RESUMO

The sp-hybridized carbon network in single- or few-layer γ-graphyne (γ-GY) has a polarized electron distribution, which can be crucial in overcoming biosafety issues. Here, we report the low-temperature synthesis, electronic properties, and amyloid fibril nanostructures of electrostatic few-layer γ-GY. ABC stacked γ-GY is synthesized by layer-by-layer growth on a catalytic copper surface, exhibiting intrinsic p-type semiconducting properties in few-layer γ-GY. Thickness-dependent electronic properties of γ-GY elucidate interlayer interactions by electron doping between electrostatic layers and layer stacking-involved modulation of the band gap. Electrostatic few-layer γ-GY induces high electronic sensitivity and intense interaction with amyloid beta (i.e., Aß40) peptides assembling into elongated mature Aß40 fibrils. Two-dimensional biocompatible nanostructures of Aß40 fibrils/few-layer γ-GY enable excellent cell viability and high neuronal differentiation of living cells without external stimulation.


Assuntos
Peptídeos beta-Amiloides , Carbono , Temperatura , Catálise , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA