Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(1): 74-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38130847

RESUMO

Background: Previous studies have shown that brain volume is negatively associated with cigarette smoking, but there is an ongoing debate about whether smoking causes lowered brain volume or a lower brain volume is a risk factor for smoking. We address this debate through multiple methods that evaluate directionality: Bradford Hill's criteria, which are commonly used to understand a causal relationship in epidemiological studies, and mediation analysis. Methods: In 32,094 participants of European descent from the UK Biobank dataset, we examined the relationship between a history of daily smoking and brain volumes, as well as an association of genetic risk score to ever smoking with brain volume. Results: A history of daily smoking was strongly associated with decreased brain volume, and a history of heavier smoking was associated with a greater decrease in brain volume. The strongest association was between total gray matter volume and a history of daily smoking (effect size = -2964 mm3, p = 2.04 × 10-16), and there was a dose-response relationship with more pack years smoked associated with a greater decrease in brain volume. A polygenic risk score for smoking initiation was strongly associated with a history of daily smoking (effect size = 0.05, p = 4.20 × 10-84), but only modestly associated with total gray matter volume (effect size = -424 mm3, p = .01). Mediation analysis indicated that a history of daily smoking mediated the relationship between the smoking initiation polygenic risk score and total gray matter volume. Conclusions: A history of daily smoking is strongly associated with a decreased total brain volume.

2.
medRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260365

RESUMO

Only recently have human postmortem brain studies of differential gene expression (DGE) associated with opioid overdose death (OOD) been published; sample sizes from these studies have been modest (N = 40-153). To increase statistical power to identify OOD-associated genes, we leveraged human prefrontal cortex RNAseq data from four independent OOD studies and conducted a transcriptome-wide DGE meta-analysis (N = 285). Using a unified gene expression data processing and analysis framework across studies, we meta-analyzed 20 098 genes and found 335 significant differentially expressed genes (DEGs) by OOD status (false discovery rate < 0.05). Of these, 66 DEGs were among the list of 303 genes reported as OOD-associated in prior prefrontal cortex molecular studies, including genes/gene families (e.g., OPRK1, NPAS4, DUSP, EGR). The remaining 269 DEGs were not previously reported (e.g., NR4A2, SYT1, HCRTR2, BDNF). There was little evidence of genetic drivers for the observed differences in gene expression between opioid addiction cases and controls. Enrichment analyses for the DEGs across molecular pathway and biological process databases highlight an interconnected set of genes and pathways from orexin and tyrosine kinase receptors through MEK/ERK/MAPK signaling to affect neuronal plasticity.

3.
Am J Clin Nutr ; 119(5): 1227-1237, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484975

RESUMO

BACKGROUND: Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES: We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS: We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS: Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION: Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.


Assuntos
Estudo de Associação Genômica Ampla , Pulmão , Testes de Função Respiratória , Vitamina D , Humanos , Volume Expiratório Forçado , Loci Gênicos , Pulmão/fisiologia , Polimorfismo de Nucleotídeo Único , Reino Unido , Capacidade Vital/genética , Vitamina D/análogos & derivados , Vitamina D/sangue , Biobanco do Reino Unido
4.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293028

RESUMO

Background: Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods: Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results: At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions: Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38830989

RESUMO

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

6.
Nat Hum Behav ; 8(6): 1177-1193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632388

RESUMO

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.


Assuntos
Tabagismo , Humanos , Tabagismo/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Estados Unidos/epidemiologia , Masculino , Feminino , Registros Eletrônicos de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA