Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 87(21): 11332-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23946457

RESUMO

Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, "slow and fast," emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a "hair trigger." Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.


Assuntos
Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Animais , Fusão Celular , Linhagem Celular Tumoral , Análise Mutacional de DNA , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
2.
J Virol ; 84(8): 3825-34, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130048

RESUMO

Herpes simplex virus (HSV) entry into cells requires four membrane glycoproteins: gD is the receptor binding protein, and gB and gH/gL constitute the core fusion machinery. Crystal structures of gD and its receptors have provided a basis for understanding the initial triggering steps, but how the core fusion proteins function remains unknown. The gB crystal structure shows that it is a class III fusion protein, yet unlike other class members, gB itself does not cause fusion. Bimolecular complementation (BiMC) studies have shown that gD-receptor binding triggers an interaction between gB and gH/gL and concurrently triggers fusion. Left unanswered was whether BiMC led to fusion or was a by-product of it. We used gB monoclonal antibodies (MAbs) to block different aspects of these events. Non-virus-neutralizing MAbs to gB failed to block BiMC or fusion. In contrast, gB MAbs that neutralize virus blocked fusion. These MAbs map to three functional regions (FR) of gB. MAbs to FR1, which contains the fusion loops, and FR2 blocked both BiMC and fusion. In contrast, MAbs to FR3, a region involved in receptor binding, blocked fusion but not BiMC. Thus, FR3 MAbs separate the BiMC interaction from fusion, suggesting that BiMC occurs prior to fusion. When substituted for wild-type (wt) gB, fusion loop mutants blocked fusion and BiMC, suggesting that loop insertion precedes BiMC. Thus, we postulate that each of the gB FRs are involved in different aspects of the path leading to fusion. Upon triggering by gD, gB fusion loops are inserted into target lipid membranes. gB then interacts with gH/gL, and this interaction is eventually followed by fusion.


Assuntos
Simplexvirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Camundongos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
3.
J Virol ; 83(13): 6825-36, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19369321

RESUMO

Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion.


Assuntos
Herpesvirus Humano 1/fisiologia , Fusão de Membrana , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Linhagem Celular , Cricetinae , Lipossomos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Ligação Viral , Internalização do Vírus
4.
J Virol ; 83(22): 11847-56, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19759132

RESUMO

Herpesviruses cross nuclear membranes (NMs) in two steps, as follows: (i) capsids assemble and bud through the inner NM into the perinuclear space, producing enveloped virus particles, and (ii) the envelopes of these virus particles fuse with the outer NM. Two herpes simplex virus (HSV) glycoproteins, gB and gH (the latter, likely complexed as a heterodimer with gL), are necessary for the second step of this process. Mutants lacking both gB and gH accumulate in the perinuclear space or in herniations (membrane vesicles derived from the inner NM). Both gB and gH/gL are also known to act directly in fusing the virion envelope with host cell membranes during HSV entry into cells, i.e., both glycoproteins appear to function directly in different aspects of the membrane fusion process. We hypothesized that HSV gB and gH/gL also act directly in the membrane fusion that occurs during virus egress from the nucleus. Previous studies of the role of gB and gH/gL in nuclear egress involved HSV gB and gH null mutants that could potentially also possess gross defects in the virion envelope. Here, we produced recombinant HSV-expressing mutant forms of gB with single amino acid substitutions in the hydrophobic "fusion loops." These fusion loops are thought to play a direct role in membrane fusion by insertion into cellular membranes. HSV recombinants expressing gB with any one of four fusion loop mutations (W174R, W174Y, Y179K, and A261D) were unable to enter cells. Moreover, two of the mutants, W174Y and Y179K, displayed reduced abilities to mediate HSV cell-to-cell spread, and W174R and A261D exhibited no spread. All mutant viruses exhibited defects in nuclear egress, enveloped virions accumulated in herniations and in the perinuclear space, and fewer enveloped virions were detected on cell surfaces. These results support the hypothesis that gB functions directly to mediate the fusion between perinuclear virus particles and the outer NM.


Assuntos
Herpesvirus Humano 1/fisiologia , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus , Western Blotting , Linhagem Celular , DNA Recombinante , Humanos , Membrana Nuclear/virologia , Proteínas Virais de Fusão/fisiologia , Vírion/fisiologia , Integração Viral/fisiologia
5.
Structure ; 21(8): 1396-405, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23850455

RESUMO

Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion.


Assuntos
Herpesvirus Humano 1/ultraestrutura , Proteínas do Envelope Viral/química , Células Cultivadas , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Bicamadas Lipídicas/química , Lipossomos/química , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Ligação Viral
6.
J Virol ; 81(9): 4858-65, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17314168

RESUMO

Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is one of four glycoproteins necessary and sufficient for HSV cellular entry. Recently, the crystal structures of HSV-1 gB and vesicular stomatitis virus glycoprotein G were determined. Surprisingly, the two proteins share remarkable structural homology. Both proteins are homotrimeric and center about a long alpha-helix, features reminiscent of class I fusion proteins, such as influenza virus hemagglutinin or paramyxovirus F. However, these structures revealed that G has internal fusion loops, similar to the fusion loops of the class II fusion proteins, and that these loops are structurally conserved in gB. To examine whether these putative fusion loops are important for gB function, we mutated potential membrane-interacting (hydrophobic) residues to charged amino acids. Of most interest were mutant gB proteins that were expressed on the cell surface and were recognized by monoclonal antibodies against conformational epitopes but lacked the ability to function in cell-cell fusion assays. We find that three of the five hydrophobic amino acids targeted in these loops, tryptophan 174, tyrosine 179, and alanine 261, are integral in the function of gB. Our data suggest that they are part of an important functional domain. We hypothesize that two loops in domain 1 of HSV gB function as fusion loops. Our data are further evidence that gB is a viral fusogen and suggest clues as to how gB may function.


Assuntos
Herpesvirus Humano 1/genética , Modelos Moleculares , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Western Blotting , Fusão Celular , Células Gigantes/virologia , Imunoprecipitação , Microscopia de Fluorescência , Mutagênese , Conformação Proteica , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA