Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 374(1): 211-222, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345620

RESUMO

The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.


Assuntos
Fígado/efeitos dos fármacos , Linfoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirazóis/efeitos adversos , Pirazóis/farmacologia , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Pirrolidinas/efeitos adversos , Pirrolidinas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Blood ; 115(17): 3520-30, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20197554

RESUMO

Indoleamine 2,3-dioxygenase-1 (IDO1; IDO) mediates oxidative cleavage of tryptophan, an amino acid essential for cell proliferation and survival. IDO1 inhibition is proposed to have therapeutic potential in immunodeficiency-associated abnormalities, including cancer. Here, we describe INCB024360, a novel IDO1 inhibitor, and investigate its roles in regulating various immune cells and therapeutic potential as an anticancer agent. In cellular assays, INCB024360 selectively inhibits human IDO1 with IC(50) values of approximately 10nM, demonstrating little activity against other related enzymes such as IDO2 or tryptophan 2,3-dioxygenase (TDO). In coculture systems of human allogeneic lymphocytes with dendritic cells (DCs) or tumor cells, INCB024360 inhibition of IDO1 promotes T and natural killer (NK)-cell growth, increases IFN-gamma production, and reduces conversion to regulatory T (T(reg))-like cells. IDO1 induction triggers DC apoptosis, whereas INCB024360 reverses this and increases the number of CD86(high) DCs, potentially representing a novel mechanism by which IDO1 inhibition activates T cells. Furthermore, IDO1 regulation differs in DCs versus tumor cells. Consistent with its effects in vitro, administration of INCB024360 to tumor-bearing mice significantly inhibits tumor growth in a lymphocyte-dependent manner. Analysis of plasma kynurenine/tryptophan levels in patients with cancer affirms that the IDO pathway is activated in multiple tumor types. Collectively, the data suggest that selective inhibition of IDO1 may represent an attractive cancer therapeutic strategy via up-regulation of cellular immunity.


Assuntos
Células Dendríticas/imunologia , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Técnicas de Cocultura , Células Dendríticas/enzimologia , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Linfócitos T/enzimologia , Triptofano Oxigenase/imunologia , Triptofano Oxigenase/metabolismo
3.
PLoS One ; 15(4): e0231877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315352

RESUMO

Alterations in fibroblast growth factor receptor (FGFR) genes have been identified as potential driver oncogenes. Pharmacological targeting of FGFRs may therefore provide therapeutic benefit to selected cancer patients, and proof-of-concept has been established in early clinical trials of FGFR inhibitors. Here, we present the molecular structure and preclinical characterization of INCB054828 (pemigatinib), a novel, selective inhibitor of FGFR 1, 2, and 3, currently in phase 2 clinical trials. INCB054828 pharmacokinetics and pharmacodynamics were investigated using cell lines and tumor models, and the antitumor effect of oral INCB054828 was investigated using xenograft tumor models with genetic alterations in FGFR1, 2, or 3. Enzymatic assays with recombinant human FGFR kinases showed potent inhibition of FGFR1, 2, and 3 by INCB054828 (half maximal inhibitory concentration [IC50] 0.4, 0.5, and 1.0 nM, respectively) with weaker activity against FGFR4 (IC50 30 nM). INCB054828 selectively inhibited growth of tumor cell lines with activation of FGFR signaling compared with cell lines lacking FGFR aberrations. The preclinical pharmacokinetic profile suggests target inhibition is achievable by INCB054828 in vivo with low oral doses. INCB054828 suppressed the growth of xenografted tumor models with FGFR1, 2, or 3 alterations as monotherapy, and the combination of INCB054828 with cisplatin provided significant benefit over either single agent, with an acceptable tolerability. The preclinical data presented for INCB054828, together with preliminary clinical observations, support continued investigation in patients with FGFR alterations, such as fusions and activating mutations.


Assuntos
Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Morfolinas/química , Morfolinas/farmacocinética , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Pirróis/química , Pirróis/farmacocinética , Ratos , Ratos Nus , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Clin Cancer Res ; 13(6): 1892-902, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17363546

RESUMO

PURPOSE: ErbB receptor signaling pathways are important regulators of cell fate, and their dysregulation, through (epi)genetic alterations, plays an etiologic role in multiple cancers. ErbB ligands are synthesized as membrane-bound precursors that are cleaved by members of the ADAM family of zinc-dependent metalloproteases. This processing, termed ectodomain shedding, is essential for the functional activation of ErbB ligands. Recent studies suggest that elevated levels of ErbB ligands may circumvent the effectiveness of ErbB-targeted therapeutics. Here, we describe the discovery and preclinical development of potent, selective inhibitors of ErbB ligand shedding. EXPERIMENTAL DESIGN: A series of biochemical and cell-based assays were established to identify selective inhibitors of ErbB ligand shedding. The therapeutic potential of these compounds was assessed in multiple in vivo models of cancer and matrix metalloprotease-related toxicity. RESULTS: INCB3619 was identified as a representative selective, potent, orally bioavailable small-molecule inhibitor of a subset of ADAM proteases that block shedding of ErbB ligands. Administration of INCB3619 to tumor-bearing mice reduced ErbB ligand shedding in vivo and inhibited ErbB pathway signaling (e.g., phosphorylation of Akt), tumor cell proliferation, and survival. Further, INCB3619 synergized with clinically relevant cancer therapeutics and showed no overt or compounding toxicities, including fibroplasia, the dose-limiting toxicity associated with broad-spectrum matrix metalloprotease inhibitors. CONCLUSIONS: Inhibition of ErbB ligand shedding offers a potentially novel and well-tolerated therapeutic strategy for the treatment of human cancers and is currently being evaluated in the clinic.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Proteínas Oncogênicas v-erbB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
ACS Med Chem Lett ; 8(5): 486-491, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523098

RESUMO

A data-centric medicinal chemistry approach led to the invention of a potent and selective IDO1 inhibitor 4f, INCB24360 (epacadostat). The molecular structure of INCB24360 contains several previously unknown or underutilized functional groups in drug substances, including a hydroxyamidine, furazan, bromide, and sulfamide. These moieties taken together in a single structure afford a compound that falls outside of "drug-like" space. Nevertheless, the in vitro ADME data is consistent with the good cell permeability and oral bioavailability observed in all species (rat, dog, monkey) tested. The extensive intramolecular hydrogen bonding observed in the small molecule crystal structure of 4f is believed to significantly contribute to the observed permeability and PK. Epacadostat in combination with anti-PD1 mAb pembrolizumab is currently being studied in a phase 3 clinical trial in patients with unresectable or metastatic melanoma.

6.
Cancer Res ; 62(17): 4909-15, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12208740

RESUMO

The thymidylate synthase reaction remains an important target for widely used anticancer agents; however, the clinical utility of these drugs is limited by the occurrence of cellular resistance. Despite the considerable amount of information available regarding mechanisms of drug action, the relative significance of downstream events that result in lethality remains unclear. In this study, we have developed a model system using the budding yeast Saccharomyces cerevisiae to dissect the influence of dUMP misincorporation into DNA as a contributing mechanism of cytotoxicity induced by antifolate agents. The activities of dUTPase and uracil-DNA glycosylase, key enzymes in uracil-DNA metabolism, were diminished or augmented, and the manipulated strains were analyzed for biochemical endpoints of toxicity. Cells overexpressing dUTPase were protected from cytotoxicity by their ability to prevent dUTP pool expansion and were able to recover from an early S-phase checkpoint arrest. In contrast, depletion of dUTPase activity leads to the accumulation of dUTP pools and enhanced sensitivity to antifolates. These cells were also arrested in early S-phase and were unable to complete DNA replication after drug withdrawal, resulting in lethality. Inactivation of uracil base excision repair induced partial resistance to early cytotoxicity (within 10 h); however, lethality ultimately resulted at later time points (12-24 h), presumably because of the detrimental effects of stable uracil misincorporation. Although these cells were able to complete replication with uracil-substituted DNA, they arrested at the G(2)-M phase. This finding may represent a novel mechanism by which the G(2)-M checkpoint is signaled by the presence of uracil-substituted DNA. Together these data provide both genetic and biochemical evidence demonstrating that lethality from antifolates in yeast is primarily dependent on uracil misincorporation into DNA, and that uracil-independent mechanisms associated with dTTP depletion play a minor role. Our findings indicate that the relative expression levels of both dUTPase and uracil-DNA glycosylase can have great influence over the efficacy of thymidylate synthase-directed chemotherapy, thereby enhancing the candidacy of these proteins as prognostic markers and alternative targets for therapeutic development.


Assuntos
DNA Glicosilases , Antagonistas do Ácido Fólico/toxicidade , N-Glicosil Hidrolases/metabolismo , Pirofosfatases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Dano ao DNA , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , DNA Fúngico/efeitos dos fármacos , DNA Fúngico/metabolismo , Farmacorresistência Fúngica , N-Glicosil Hidrolases/biossíntese , N-Glicosil Hidrolases/genética , Pirofosfatases/biossíntese , Pirofosfatases/genética , Saccharomyces cerevisiae/genética , Uracila/metabolismo , Uracila-DNA Glicosidase
7.
DNA Repair (Amst) ; 2(3): 315-23, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12547394

RESUMO

There are at least four distinct families of enzymes that recognize and remove uracil from DNA. Family-3 (SMUG1) enzymes have recently been identified and have a preference for uracil in single-stranded DNA when assayed in vitro. Here we investigate the in vivo function of SMUG1 using the yeast Saccharomyces cerevisiae as a model system. These organisms lack a SMUG1 homologue and use a single enzyme, Ung1 to carry out uracil-repair. When a wild-type strain is treated with antifolate agents to induce uracil misincorporation into DNA, S-phase arrest and cellular toxicity occurs. The arrest is characteristic of checkpoint activation due to single-strand breaks caused by continuous uracil removal and self-defeating DNA repair. When uracil-DNA glycosylase is deleted (deltaung1), cells continue through S-phase and arrest at G(2)/M, presumably due to the effects of stable uracil misincorporation in DNA. Pulsed field gel electrophoresis (PFGE) demonstrates that cells are able to complete DNA replication with uracil-substituted DNA and do not experience the extensive strand breakage attributed to uracil-DNA glycosylase-mediated repair. As a result, these cells experience early protection from antifolate-induced cytotoxicity. When either UNG1 or SMUG1 functions are reintroduced back into the null strain and then subjected to antifolate treatment, the cells revert back to the wild-type phenotype as shown by a restored sensitivity to drug and S-phase arrest. The arrest is accompanied by the accumulation of replication intermediates as determined by PFGE. Collectively, these data indicate that SMUG1 can act as a functional homolog of the family-1 uracil-DNA glycosylase enzymes.


Assuntos
DNA Glicosilases , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Animais , DNA/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , Citometria de Fluxo , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Knockout , Organismos Geneticamente Modificados , Uracila/metabolismo , Uracila-DNA Glicosidase
8.
J Med Chem ; 48(18): 5644-7, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16134930

RESUMO

Inhibitors of human methionine aminopeptidase type 2 (hMetAP2) are of interest as potential treatments for cancer. A new class of small molecule reversible inhibitors of hMetAP2 was discovered and optimized, the 4-aryl-1,2,3-triazoles. Compound 24, a potent inhibitor of cobalt-activated hMetAP2, also inhibits human and mouse endothelial cell growth. Using a mouse matrigel model, this reversible hMetAP2 inhibitor was also shown to inhibit angiogenesis in vivo.


Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores da Angiogênese/síntese química , Metaloendopeptidases/antagonistas & inibidores , Triazóis/síntese química , Aminopeptidases/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cobalto/metabolismo , Colágeno , Cristalografia por Raios X , Combinação de Medicamentos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/citologia , Ativação Enzimática , Humanos , Laminina , Metaloendopeptidases/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Proteoglicanas , Ratos , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
9.
Mol Cancer Ther ; 9(2): 489-98, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20124451

RESUMO

Malignant tumors arise, in part, because the immune system does not adequately recognize and destroy them. Expression of indoleamine-2,3-dioxygenase (IDO; IDO1), a rate-limiting enzyme in the catabolism of tryptophan into kynurenine, contributes to this immune evasion. Here we describe the effects of systemic IDO inhibition using orally active hydroxyamidine small molecule inhibitors. A single dose of INCB023843 or INCB024360 results in efficient and durable suppression of Ido1 activity in the plasma of treated mice and dogs, the former to levels seen in Ido1-deficient mice. Hydroxyamidines potently suppress tryptophan metabolism in vitro in CT26 colon carcinoma and PAN02 pancreatic carcinoma cells and in vivo in tumors and their draining lymph nodes. Repeated administration of these IDO1 inhibitors impedes tumor growth in a dose- and lymphocyte-dependent fashion and is well tolerated in efficacy and preclinical toxicology studies. Substantiating the fundamental role of tumor cell-derived IDO expression, hydroxyamidines control the growth of IDO-expressing tumors in Ido1-deficient mice. These activities can be attributed, at least partially, to the increased immunoreactivity of lymphocytes found in tumors and their draining lymph nodes and to the reduction in tumor-associated regulatory T cells. INCB024360, a potent IDO1 inhibitor with desirable pharmaceutical properties, is poised to start clinical trials in cancer patients.


Assuntos
Amidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias/metabolismo , Triptofano/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Feminino , Humanos , Sistema Imunitário , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Cinurenina/farmacologia , Linfonodos/patologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia
10.
J Med Chem ; 52(23): 7364-7, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19507862

RESUMO

A hydroxyamidine chemotype has been discovered as a key pharmacophore in novel inhibitors of indoleamine 2,3-dioxygenase (IDO). Optimization led to the identification of 5l, which is a potent (HeLa IC(50) = 19 nM) competitive inhibitor of IDO. Testing of 5l in mice demonstrated pharmacodynamic inhibition of IDO, as measured by decreased kynurenine levels (>50%) in plasma and dose dependent efficacy in mice bearing GM-CSF-secreting B16 melanoma tumors.


Assuntos
Ligação Competitiva , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Melanoma/enzimologia , Amidinas/química , Amidinas/metabolismo , Amidinas/farmacologia , Amidinas/uso terapêutico , Animais , Modelos Animais de Doenças , Progressão da Doença , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Concentração Inibidora 50 , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Camundongos , Modelos Moleculares , Conformação Molecular
11.
Bioorg Med Chem Lett ; 17(17): 4756-60, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17618114

RESUMO

This communication details the evolution of the screening lead SB-203580, a known CSBP/p38 kinase inhibitor, into a potent and selective Tie2 tyrosine kinase inhibitor. The optimized compound 5 showed efficacy in an in vivo model of angiogenesis and a MOPC-315 plasmacytoma xenograft model.


Assuntos
Inibidores Enzimáticos/síntese química , Imidazóis/química , Imidazóis/farmacologia , Plasmocitoma/tratamento farmacológico , Receptor TIE-2/antagonistas & inibidores , Receptor TIE-2/química , Animais , Linhagem Celular Tumoral , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Químicos , Modelos Moleculares , Transplante de Neoplasias , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Bioorg Med Chem Lett ; 17(20): 5514-7, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17826092

RESUMO

In an effort to understand the effect of N-alkylation of triarylimidazoles on Tie2 inhibition, ortho-substituted C-2 aryl analogs were synthesized to investigate the effect of different torsion angles on potency. This exercise resulted in the identification of a potent and selective tetrasubstituted imidazole that was efficacious in an animal model of angiogenesis.


Assuntos
Imidazóis/síntese química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Receptor TIE-2/antagonistas & inibidores , Imidazóis/química , Concentração Inibidora 50 , Metilação , Modelos Moleculares , Conformação Molecular , Inibidores de Proteínas Quinases/química , Receptor TIE-2/química , Receptor TIE-2/metabolismo , Sensibilidade e Especificidade , Relação Estrutura-Atividade
13.
J Rheumatol ; 29(2): 230-9, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11838839

RESUMO

OBJECTIVE: Angiopoietin- I (Ang-1) and Ang-2 are ligands for the receptor tyrosine kinase, Tie-2. Ang-1, a Tie-2 agonist, may have a vascular stabilizing role in angiogenesis, while Ang-2, an endogenous antagonist of Tie-2, may have an early role in angiogenesis, destabilizing existing vasculature. We show that these ligands are expressed by rheumatoid synovial fibroblasts (RSF) and investigate whether their expression was modulated by proinflammatory cytokines present in the joint in rheumatoid arthritis (RA). METHODS: Using quantitative PCR we determined the level of expression of these 2 ligands in RSF and chronic inflamed synovial tissue. The level of expression of these ligands after treatment with proinflammatory cytokines and hypoxia was also determined. RESULTS: We observed constitutive expression of Ang-1 and Ang-2 in RSF and chronic inflamed synovial tissue. Ang-1 was the most highly expressed ligand in late stage RA synovial fibroblasts; however, in chronic inflamed synovial tissue, Ang-2 was predominant and was expressed at strikingly high levels (70 to 120-fold increase). We observed that tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta), but not interleukin 1beta or hypoxia, stimulated Ang-1 gene expression in RSE This was confirmed at the protein level as media from TNF-alpha treated RSF resulted in increased autophosphorylation of Tie-2. In contrast, TNF-alpha and TGF-beta had no effect on Ang-2 expression in RSF, but augmented expression of Ang-2 in normal synovial fibroblasts. CONCLUSION: The angiopoietins are important angiogenic factors constitutively present in RA, and their expression is modulated by certain cytokines. Ang-2 may have an important role in rheumatoid tissue where vigorous angiogenesis is occurring.


Assuntos
Artrite Reumatoide/metabolismo , Citocinas/fisiologia , Fibroblastos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas/metabolismo , Membrana Sinovial/metabolismo , Angiopoietina-1 , Angiopoietina-2 , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Reação em Cadeia da Polimerase , Proteínas/genética , RNA Mensageiro/biossíntese , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Membrana Sinovial/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA