Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32070490

RESUMO

Researchers frequently use 3T3-L1 adipocytes as a fat cell line, but the capacity of this line for insulin-mediated glucose transport is lower than that of primary isolated fat cells. In this study, we found that 5-azacytidine (5-aza-C), DNA methyltransferase 1 inhibitor, enhanced insulin-stimulated 2-deoxyglucose (2-DG) transport in 3T3-L1 cells after adipogenic differentiation. We next examined the expression of the genes related to glucose transport and insulin signal transduction. The insulin independent glucose transporter, glucose transporter 1 (GLUT1), showed lower expression in 5-aza-C pre-treated 3T3-L1 adipocytes, than in un-treated control adipocytes, while the expression of insulin dependent transporter GLUT4 remained unchanged. In addition, insulin receptor substrate-1 (IRS-1) was highly expressed in 5-aza-C pre-treated adipocytes. Based on DNA microarray and functional annotation analysis, we noticed that 5-aza-C pretreatment activated the tumor suppressor p53 pathway. We confirmed that in 5-aza-C adipocytes, p53 expression was markedly higher, and the methylation level of CpGs in its promoter region was lower than in un-treated control adipocytes. Moreover, pharmacological inhibition of p53 restored GLUT1 and IRS-1 expression to the same level as in un-treated 3T3-L1 adipocytes, and significantly decreased insulin-mediated 2-DG uptake. These results suggest that glucose transport capacity in adipocytes is influenced by DNA methylation status, and demethylation induced by 5-aza-C increased it possibly through the p53 signaling pathway.

2.
J Muscle Res Cell Motil ; 41(2-3): 199-209, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32451822

RESUMO

ACTN2 and ACTN3 encode sarcomeric α-actinin-2 and α-actinin-3 proteins, respectively, that constitute the Z-line in mammalian skeletal muscle fibers. In human ACTN3, a nonsense mutation at codon 577 that encodes arginine (R) produces the R577X polymorphism. Individuals having a homozygous 577XX genotype do not produce α-actinin-3 protein. The 577XX genotype reportedly occurs in sprint and power athletes in frequency lower than in the normal population, suggesting that α-actinin-3 deficiency diminishes fast-type muscle function. Among humans who carry 577R alleles, varying ACTN3 expression levels under certain conditions can have diverse effects on atheletic and muscle performance. However, the factors that regulate ACTN3 expression are unclear. Here we investigated whether the unfolded protein response (UPR) under endoplasmic reticulum (ER) stress regulates expression of Actn3 and its isoform Actn2 in mouse C2C12 myotubes. Among UPR-related transcription factors, XBP1 upregulated Actn2, whereas XBP1, ATF4 and ATF6 downregulated Actn3 promoter activity. Chemical induction of ER stress increased Actn2 mRNA levels, but decreased those for Actn3. ER stress also decreased α-actinin-3 protein levels, whereas levels of α-actinin-2 were unchanged. The intracellular composition of muscle contraction-related proteins was altered under ER stress, in that expression of parvalbumin (a fast-twitch muscle-specific protein) and troponin I type 1 (skeletal, slow) was suppressed. siRNA-induced suppression of Actn3 mimicked the inhibitory effect of ER stress on parvalbumin levels. Thus, endogenous expression levels of α-actinin-3 can be altered by ER stress, which may modulate muscle performance and athletic aptitudes, particularly in humans who carry ACTN3 577R alleles.


Assuntos
Actinina/biossíntese , Fibras Musculares Esqueléticas/metabolismo , Resposta a Proteínas não Dobradas/genética , Actinina/genética , Actinina/metabolismo , Animais , Biologia Computacional/métodos , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Transfecção
3.
Biochem Biophys Res Commun ; 502(3): 422-428, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29857001

RESUMO

The ACTN3 gene encodes α-actinin-3 protein, which stabilizes the contractile apparatus at the Z-line in skeletal muscle cell fast fibers. A nonsense mutation of the arginine (R) at the codon for amino acid 577 of the ACTN3 gene generates a premature termination codon (PTC) and produces the R577X polymorphism in humans (X specifies translational termination). The ACTN3 577X genotype abolishes α-actinin-3 protein production due to targeted degradation of the mutant transcript by the cellular nonsense-mediated mRNA decay (NMD) system, which requires mRNA splicing. In humans, α-actinin-3 deficiency can decrease sprinting and power performance as well as skeletal muscle mass and strength. Here we investigated whether suppression of the in-frame PTC induced by treatment with the aminoglycosides gentamicin and G418 that promote termination codon readthrough could allow production of full-length α-actinin-3 protein from ACTN3 577X. We constructed expression plasmids encoding mature mRNA that lacks introns or pre-mRNA, which carries introns for the ACTN3 577X gene (X and Xpre, respectively) and transfected the constructs into HEK293 cells. Similar constructs for the ACTN3 577R gene were used as controls. HEK293 cells carrying the X gene, but not the Xpre gene, expressed exogenous truncated α-actinin-3 protein, indicating NMD-mediated suppression of exogenous Xpre expression. Cells treated with aminoglycosides produced exogenous full-length α-actinin-3 protein in X-transfected cells, but not in Xpre-transfected cells. The NMD inhibitor caffeine prevented suppression of Xpre expression and thereby induced production of full-length α-actinin-3 protein in the presence of aminoglycoside. Together these results indicate that the ACTN3 R577X polymorphism could be a novel target for readthrough therapy, which may affect athletic and muscle performance in humans.


Assuntos
Actinina/biossíntese , Actinina/genética , Códon sem Sentido , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Cafeína/farmacologia , Códon sem Sentido/efeitos dos fármacos , Gentamicinas/farmacologia , Células HEK293 , Humanos , Músculo Esquelético/metabolismo , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
4.
Biochem Biophys Res Commun ; 500(2): 275-282, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653103

RESUMO

The physiological activity of the steroid derived hormone vitamin D is regulated by several enzymatic steps. Both 25-hydroxy vitamin D3 1α-hydroxylase (CYP27B1) and 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1) modulate blood levels of 1,25-dihydroxyvitamin D3, an activated form of vitamin D. We previously demonstrated that CYP27B1 expression was trans-activated by sterol regulatory element binding protein 1 (SREBP1), although whether SREBP1 also regulates CYP24A1 transcription was unclear. Here we investigated the ability of SREBP1 to affect CYP24A1 transcription. In a luciferase reporter assay, mouse and human CYP24A1 promoter activity was strongly activated by SREBP1 in opossum kidney proximal tubular cells (OK-P). Three putative SREs (pSREs) were found in the mouse Cyp24a1 gene promoter and the SREBP1 protein showed specific binding to the pSRE1 element in EMSAs. Site-directed mutagenesis of the pSRE1 element strongly decreased SREBP1-mediated Cyp24a1 gene transcription. Moreover, siRNA-mediated SREBP1 knock-down repressed CYP24A1 expression in human renal proximal tubular epithelial cells (HKC-8). In animal studies, mice given various doses of thyroid hormone (T3) showed dose-dependent reductions in renal Srebp1c and Cyp24a1 mRNA levels. Taken together, our results suggest that SREBP1 trans-activates CYP24A1 expression through SREBP binding elements present in the promoter.


Assuntos
Regulação Enzimológica da Expressão Gênica , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional/genética , Vitamina D3 24-Hidroxilase/genética , Animais , Sequência de Bases , Linhagem Celular , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
5.
J Cell Biochem ; 118(11): 3810-3824, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28383761

RESUMO

Nonsense-mediated mRNA decay (NMD) degrades mRNAs carrying a premature termination codon (PTC) in eukaryotes. Cellular stresses, including endoplasmic reticulum (ER) stress, inhibit NMD, and up-regulate PTC-containing mRNA (PTC-mRNA) levels in several cell lines. However, whether similar effects exist under in vivo conditions that involve systemic nutritional status is unclear. Here, we compared the effects of pharmacological induction of ER stress with those of nutritional interventions on hepatic PTC-mRNA levels in mice. In mouse livers, the ER stress inducer tunicamycin increased PTC-mRNA levels of endogenous marker genes. Tunicamycin decreased body weight and perturbed nutrient metabolism in mice. Food restriction or deprivation mimicked the effect of tunicamycin on weight loss and metabolism, but did not increase PTC-mRNA levels. Hyperphagia-induced obesity also had little effect on hepatic PTC-mRNA levels. Meanwhile, in mouse liver phosphorylation of eIF2α, a factor that regulates NMD, was increased by both tunicamycin and nutritional interventions. Hepatic expression of GRP78, a central chaperone in ER stress responses, was increased by tunicamycin but not by the nutritional interventions. In cultured liver cells (Hepa), exogenous overexpression of a phosphomimetic eIF2α failed to increase PTC-mRNA levels. However, GRP78 overexpression in Hepa cells increased PTC-mRNA and PTC-mRNA-derived protein levels. ER stress promoted localization of GRP78 to mitochondria, and exogenous expression of a GRP78 fusion protein targeted to mitochondria mimicked the effect of wild type GRP78. These results indicate that GRP78, but not nutritional status, is a potent up-regulator of hepatic PTC-mRNA levels during induction of ER stress in vivo. J. Cell. Biochem. 118: 3810-3824, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Códon de Terminação , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/biossíntese , Fígado/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Obesidade/metabolismo , Animais , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Hiperfagia/induzido quimicamente , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , Células NIH 3T3 , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Tunicamicina/efeitos adversos , Tunicamicina/farmacologia
6.
J Clin Biochem Nutr ; 56(1): 35-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25678749

RESUMO

High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.

7.
Diabetologia ; 57(3): 512-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24310561

RESUMO

AIMS/HYPOTHESIS: Research on the pathogenesis of type 1 diabetes relies heavily on good animal models. The aim of this work was to study the translational value of animal models of type 1 diabetes to the human situation. METHODS: We compared the four major animal models of spontaneous type 1 diabetes, namely the NOD mouse, BioBreeding (BB) rat, Komeda rat and LEW.1AR1-iddm rat, by examining the immunohistochemistry and in situ RT-PCR of immune cell infiltrate and cytokine pattern in pancreatic islets, and by comparing findings with human data. RESULTS: After type 1 diabetes manifestation CD8(+) T cells, CD68(+) macrophages and CD4(+) T cells were observed as the main immune cell types with declining frequency, in infiltrated islets of all diabetic pancreases. IL-1ß and TNF-α were the main proinflammatory cytokines in the immune cell infiltrate in NOD mice, BB rats and LEW.1AR1-iddm rats, as well as in humans. The Komeda rat was the exception, with IFN-γ and TNF-α being the main cytokines. In addition, IL-17 and IL-6 and the anti-inflammatory cytokines IL-4, IL-10 and IL-13 were found in some infiltrating immune cells. Apoptotic as well as proliferating beta cells were observed in infiltrated islets. In healthy pancreases no proinflammatory cytokine expression was observed. CONCLUSIONS/INTERPRETATION: With the exception of the Komeda rat, the animal models mirror very well the situation in humans with type 1 diabetes. Thus animal models of type 1 diabetes can provide meaningful information on the disease processes in the pancreas of patients with type 1 diabetes.


Assuntos
Apoptose , Linfócitos B/patologia , Citocinas/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/imunologia , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Ratos , Ratos Endogâmicos BB , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
8.
Circ J ; 78(8): 1980-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24859498

RESUMO

BACKGROUND: Left atrial (LA) thrombosis is an important cause of systemic embolization. The SPORTS rat model of LA thrombi (Spontaneously-Running Tokushima-Shikoku), which have a unique characteristic of high voluntary wheel running, was previously established. The aim of the present study was to investigate how SPORTS rats develop LA thrombi. METHODS AND RESULTS: Nitric oxide (NO) produced from cardiovascular endothelial cells plays an important protective role in the local regulation of blood flow, vascular tone, and platelet aggregation. No evidence of atrial fibrillation or hypercoagulability in SPORTS rats regardless of age was found; however, SPORTS rats demonstrated endothelial dysfunction and a decrease of NO production from a young age. In addition, endothelial NO synthase activity was significantly decreased in the LA and thoracic aorta endothelia of SPORTS rats. While voluntary wheel running was able to intermittently increase NO levels, running did not statistically decrease the incidence of LA thrombi at autopsy. However, L-arginine treatment significantly increased NO production and provided protection from the development of LA thrombi in SPORTS rats. CONCLUSIONS: They present study results indicate that NO has an important role in the development of LA thrombus, and endothelia pathways could provide new targets of therapy to prevent LA thrombosis.


Assuntos
Endotélio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Trombose/metabolismo , Animais , Modelos Animais de Doenças , Endotélio/patologia , Feminino , Átrios do Coração/metabolismo , Masculino , Ratos , Trombose/patologia
9.
J Toxicol Pathol ; 27(1): 51-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24791067

RESUMO

Studies that investigate the underlying mechanisms of disease and treatment options typically require the use of a suitable animal model. Few suitable animal models exist for left atrial thrombosis. Here, we demonstrated that the Spontaneously-Running-Tokushima-Shikoku (SPORTS) rat - a Wistar strain known for its running ability-is predisposed to the development of thrombi in the left atrium. We investigated the incidence of left atrial thrombosis in male (n = 16) and female (n = 17) SPORTS rats and observed organized atrial thrombosis in 57% and 38% of males and female rats, respectively. In the male rats, systolic blood pressures and heart rates were significantly higher in SPORTS rats than in control Wistar rats. We could not find any evidence of arrhythmias, such as atrial fibrillation, during electrocardiographic examination of SPORTS rats. We believe that the SPORTS rat could serve as a new research model for left atrial thrombosis; further, it may be suitable for research investigating the development of new antithrombotic approaches for the control of atrial thrombosis or familial thrombophilia in humans.

10.
Cell Biochem Biophys ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824236

RESUMO

Fatty acid synthase (FASN) catalyzes the rate-limiting step of cellular lipogenesis. FASN expression is upregulated in various types of cancer cells, implying that FASN is a potential target for cancer therapy. 2-Deoxy-D-glucose (2-DG) specifically targets cancer cells by inhibiting glycolysis and glucose metabolism, resulting in multiple anticancer effects. However, whether the effects of 2-DG involve lipogenic metabolism remains to be elucidated. We investigated the effect of 2-DG administration on FASN expression in HeLa human cervical cancer cells. 2-DG treatment for 24 h decreased FASN mRNA and protein levels and suppressed the activity of an exogenous rat Fasn promoter. The use of a chemical activator or inhibitors or of a mammalian expression plasmid showed that neither AMPK nor the Sp1 transcription factor is responsible for the inhibitory effect of 2-DG on FASN expression. Administration of thapsigargin, an endoplasmic reticulum (ER) stress inducer, or 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), a site 1 protease inhibitor, mimicked the inhibitory effect of 2-DG on FASN expression. 2-DG did not further decrease FASN expression in the presence of thapsigargin or AEBSF. Site 1 protease mediates activation of ATF6, an ER stress mediator, as well as sterol regulatory element-binding protein 1 (SREBP1), a robust transcription factor for FASN. Administration of 2-DG or thapsigargin for 24 h suppressed activation of ATF6 and SREBP1, as did AEBSF. We speculated that these effects of 2-DG or thapsigargin are due to feedback inhibition via increased GRP78 expression following ER stress. Supporting this, exogenous overexpression of GRP78 in HeLa cells suppressed SREBP1 activation and Fasn promoter activity. These results suggest that 2-DG suppresses FASN expression via an ER stress-dependent pathway, providing new insight into the molecular basis of FASN regulation in cancer.

11.
Biochem Biophys Res Commun ; 423(1): 128-33, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22634312

RESUMO

Glycerol-3-phosphate acyltransferase 1 (GPAT1) acts as a rate limiting enzyme in triacylglycerol and phospholipid synthesis in mammals. GPAT1 regulates hepatic lipid accumulation associated with metabolic disorders. Here we have identified two transcriptional initiation sites and two promoters (promoter I and II) required for expression of the human GPAT1 (hGPAT1) gene. Promoter I regulates transcription of three alternative hGPAT1 mRNA variants, hGPAT1-V1, V2, and V3, while promoter II induces expression of a fourth variant, hGPAT1-V4. RT-PCR analysis and luciferase reporter assays revealed that promoter II acts in lipogenic tissues like the liver (and liver-derived HepG2 cells), whereas promoter I is differentially regulated and also acts in non-liver HeLa cells. Among liver-enriched transcription factors, HNF4α and C/EBPα slightly activated hGPAT1 promoter I, while factors including HNF1α altered promoter II activity. The lipogenic transcription factor SREBP1c greatly increased promoter II activity in HepG2 cells. The use of various truncated or mutated fragments of promoter II revealed that one sterol regulatory element-like motif and one inverted CCAAT box on promoter II contributed to the SREBP1c response. These cis-acting elements and trans-acting factors can be potential targets for manipulation of hepatic GPAT1 levels in humans.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/genética , Fígado/enzimologia , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Éxons , Células HeLa , Células Hep G2 , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Íntrons , Camundongos , Células NIH 3T3 , RNA Mensageiro/genética , Elementos de Resposta/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcrição Gênica
12.
Biochem Biophys Res Commun ; 418(3): 506-11, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22285183

RESUMO

Glycerol-3-phosphate acyltransferase (GPAT) is a rate-limiting enzyme in mammalian triacylglycerol biosynthesis. GPAT is a target for the treatment of metabolic disorders associated with high lipid accumulation. Although the molecular basis for GPAT1 activation has been investigated extensively, the activation of other isoforms, such as GPAT2, is less well understood. Here the membrane topology of the GPAT2 protein was examined using an epitope-tag-based method. Exogenously expressed GPAT2 protein was present in the membrane fraction of transformed HEK293 cells even in the presence of Na(2)CO(3) (100 mM), indicating that GPAT2 is a membrane-bound protein. Trypsin treatment of the membrane fraction degraded the N-terminal (FLAG) and C-terminal (myc-epitope) protein tags of the GPAT2 protein. Bioinformatic analysis of the GPAT2 protein sequence indicated four hydrophobic sequences as potential membrane-spanning regions (TM1-TM4). Immunoblotting of the myc-epitope tag, which was inserted between each TM region of the GPAT2 protein, showed that the amino acid sequence between TM3 and TM4 was protected from trypsin digestion. These results suggest that the GPAT2 protein has two transmembrane segments and that the N-terminal and C-terminal regions of this protein face the cytoplasm. These results also suggest that the enzymatically active motifs I-III of the GPAT2 protein face the cytosol, while motif IV is within the membrane. It is expected that the use of this topological model of GPAT2 will be essential in efforts to elucidate the molecular mechanisms of GPAT2 activity in mammalian cells.


Assuntos
Membrana Celular/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Motivos de Aminoácidos , Animais , Citoplasma/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/química , Glicerol-3-Fosfato O-Aciltransferase/genética , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
13.
J Infect Dis ; 203(4): 537-44, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21177635

RESUMO

BACKGROUND: Vibrio parahaemolyticus causes acute gastroenteritis and inflammations in humans. A variety of pathogenic bacteria can stimulate mitogen-activated protein kinases (MAPKs) in host cells. Phosphorylation of MAPKs leads to production of interleukin (IL)- 8 and subsequently causes inflammations. Thus, MAPK cascades were strong candidates for the main signaling pathway of V. parahaemolyticus-induced acute inflammation. METHODS: To determine whether the signaling pathway on V. parahaemolyticus infection induces inflammation, we analyzed the secretion level of IL-8 and phosphorylation of MAPKs by use of intestinal epithelial Caco-2 cells. RESULTS: V. parahaemolyticus infection of Caco-2 cells activated extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK signal pathways, leading to IL-8 secretion, whereas MAPK inhibitors, UO126 or SB203580, suppressed IL-8 secretion. A strain carrying a deletion of VP1680, a type three secretion system 1 (T3SS1) effector protein, failed to activate phosphorylation of ERK1/2 and p38 MAPK and secretion of IL-8. ERK1/2 pathway inhibitor, UO126, failed IL-8 promoter activity, whereas p38 MAPK inhibitor, SB203580, decreased the stabilization of IL-8 messenger RNA following V. parahaemolyticus infection. CONCLUSIONS: We showed that V. parahaemolyticus infection of Caco-2 cells results in the secretion of IL-8, and that VP1680 plays a pivotal role in manipulating host cell signaling and is responsible for triggering IL-8 secretion.


Assuntos
Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Vibrio parahaemolyticus/imunologia , Vibrio parahaemolyticus/patogenicidade , Proteínas Virais/imunologia , Fatores de Virulência/imunologia , Células CACO-2 , Humanos , Fosforilação
14.
Islets ; 14(1): 1-13, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34636707

RESUMO

The aim of this study was to identify genes that are specifically expressed in pancreatic islet ß-cells (hereafter referred to as ß-cells). Large-scale complementary DNA-sequencing analysis was performed for 3,429 expressed sequence tags derived from murine MIN6 ß-cells, through homology comparisons using the GenBank database. Three individual ESTs were found to code for protease serine S1 family member 53 (Prss53). Prss53 mRNA is processed into both a short and long form, which encode 482 and 552 amino acids, respectively. Transient overexpression of myc-tagged Prss53 in COS-7 cells showed that Prss53 was strongly associated with the luminal surfaces of organellar membranes and that it underwent signal peptide cleavage and N-glycosylation. Immunoelectron microscopy and western blotting revealed that Prss53 localized to mitochondria in MIN6 cells. Short hairpin RNA-mediated Prss53 knockdown resulted in Ppargc1a downregulation and Ucp2 and Glut2 upregulation. JC-1 staining revealed that the mitochondria were depolarized in Prss53-knockdown MIN6 cells; however, no change was observed in glucose-stimulated insulin secretion. Our results suggest that mitochondrial Prss53 expression plays an important role in maintaining the health of ß-cells.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Proteínas Mitocondriais , Serina Proteases/genética , Animais , Glucose , Insulina , Camundongos , Proteínas Mitocondriais/genética
15.
Biochem Biophys Res Commun ; 405(1): 96-101, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21216232

RESUMO

Insulin-responsive aminopeptidase (IRAP) and GLUT4 are two major cargo proteins of GLUT4 storage vesicles (GSVs) that are translocated from a postendosomal storage compartment to the plasma membrane (PM) in response to insulin. The cytoplasmic region of IRAP is reportedly involved in retention of GSVs. In this study, vimentin was identified using the cytoplasmic domain of IRAP as bait. The validity of this interaction was confirmed by pull-down assays and immunoprecipitation in 3T3-L1 adipocytes. In addition, it was shown that GLUT4 translocation to the PM by insulin was decreased in vimentin-depleted adipocytes, presumably due to dispersing GSVs away from the cytoskeleton. These findings suggest that the IRAP binding protein, vimentin, plays an important role in retention of GSVs.


Assuntos
Cistinil Aminopeptidase/metabolismo , Vesículas Citoplasmáticas/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Vimentina/metabolismo , Células 3T3-L1 , Animais , Técnicas de Silenciamento de Genes , Camundongos , Transporte Proteico , Vimentina/genética
16.
Anesth Analg ; 113(6): 1374-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22003223

RESUMO

BACKGROUND: We investigated the effects of the imidazoline-derived α2-adrenoceptor agonist clonidine on vascular adenosine triphosphate-sensitive potassium (K(ATP)) channel activity in rat vascular smooth muscle cells and recombinant vascular K(ATP) channels transiently expressed in COS-7 cells. METHODS: Using the patch-clamp method, we investigated the effects of clonidine on the following: (1) native vascular K(ATP) channels; (2) recombinant K(ATP) channels with different combinations of various types of inwardly rectifying potassium channel (Kir6.0 family: Kir6.1, 6.2) and sulfonylurea receptor (SUR1, 2A, 2B) subunits; (3) SUR-deficient channels derived from a truncated isoform of the Kir6.2 subunit (Kir6.2ΔC36 channels); and (4) mutant Kir6.2ΔC36 channels with diminished sensitivity to ATP (Kir6.2ΔC36-K185Q channels). RESULTS: Clonidine (≥3 × 10(-8) M) inhibited native K(ATP) channel activity in cell-attached configurations with a half-maximal inhibitory concentration value of 1.21 × 10(-6) M and in inside-out configurations with a half-maximal inhibitory concentration value of 0.89 × 10(-6) M. With similar potency, clonidine (10(-6) or 10(-3) M) also inhibited the activities of various recombinant SUR/Kir6.0 K(ATP) channels, the Kir6.2ΔC36 channel, and the Kir6.2ΔC36-K185Q channel. CONCLUSIONS: Clinically relevant concentrations of clonidine inhibit K(ATP) channel activity in vascular smooth muscle cells. This inhibition seems to be the result of its effect on the Kir6.0 subunit and not on the SUR subunit.


Assuntos
Clonidina/farmacologia , Músculo Liso Vascular/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Humanos , Canais KATP/antagonistas & inibidores , Canais KATP/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Ratos
17.
Transl Res ; 237: 16-30, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33775867

RESUMO

Fish oil-derived long-chain monounsaturated fatty acids (LCMUFAs) with a carbon chain length longer than 18 units ameliorate cardiovascular risk in mice. In this study, we investigated whether LCMUFAs could improve endothelial functions in mice and humans. In a double-blind, randomized, placebo-controlled, parallel-group, multi-center study, healthy subjects were randomly assigned to either an LCMUFA oil (saury oil) or a control oil (olive and tuna oils) group. Sixty subjects were enrolled and administrated each oil for 4 weeks. For the animal study, ApoE-/- mice were fed a Western diet supplemented with 3% of either gadoleic acid (C20:1) or cetoleic acid (C22:1) for 12 weeks. Participants from the LCMUFA group showed improvements in endothelial function and a lower trimethylamine-N-oxide level, which is a predictor of coronary artery disease. C20:1 and C22:1 oils significantly improved atherosclerotic lesions and plasma levels of several inflammatory cytokines, including IL-6 and TNF-α. These beneficial effects were consistent with an improvement in the gut microbiota environment, as evident from the decreased ratio of Firmicutes and/ or Bacteroidetes, increase in the abundance of Akkermansia, and upregulation of short-chain fatty acid (SCFA)-induced glucagon-like peptide-1 (GLP-1) expression and serum GLP-1 level. These data suggest that LCMUFAs alter the microbiota environment that stimulate the production of SCFAs, resulting in the induction of GLP-1 secretion. Fish oil-derived long-chain monounsaturated fatty acids might thus help to protect against cardiovascular disease.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Óleos de Peixe/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Biomarcadores , Glicemia , Manteiga , Gorduras na Dieta , Método Duplo-Cego , Ácidos Graxos Monoinsaturados/química , Feminino , Óleos de Peixe/análise , Humanos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Knockout para ApoE , Azeite de Oliva , Adulto Jovem
18.
Biochim Biophys Acta ; 1791(1): 39-52, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18983939

RESUMO

Glycerol-3-phosphate acyltransferase 1 (GPAT1) is a rate limiting enzyme in de novo glycerophospholipid synthesis. The murine GPAT1 promoter sequence (the "classical" sequence) was reported previously. However, the organization of this DNA sequence does not fully match the mouse genome sequences on NCBI/GenBank. Here we have identified net cis-acting promoter sequences for the mouse GPAT1 gene: promoter 1a which includes part of the classical sequence and the downstream promoter 1b. Promoter 1a facilitates transcription of two alternative GPAT1 transcript variants, GPAT1-V1 and V2, while promoter 1b produces a third transcript variant, GPAT1-V3. Upstream stimulating factor-1 (USF-1) controlled both promoters whereas sterol regulatory element-binding protein-1 (SREBP-1) exclusively regulated promoter 1a activity in vitro. Feeding increased GPAT1-V1 and V2, but not V3 mRNA levels in mouse liver. The obese condition of db/db mice did not alter the hepatic expression levels of any of the three GPAT1 variants. Feeding enhanced hepatic mRNA levels, intranuclear protein levels and promoter 1a-binding levels of SREBP-1, but not of USF-1. Thus, promoter 1a was exclusively activated by routine feeding in vivo. Our results indicate differential roles of the two promoters in the regulation of hepatic GPAT1 gene expression in mice.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/genética , Regiões Promotoras Genéticas/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Obesos , Interferência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Fatores Estimuladores Upstream/fisiologia
19.
Biochem Biophys Res Commun ; 391(1): 995-9, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19968963

RESUMO

In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.


Assuntos
Adipócitos/metabolismo , Membrana Celular/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Vesículas Citoplasmáticas/metabolismo , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glucose/farmacologia , Insulina/farmacologia , Camundongos , Miosina não Muscular Tipo IIA/genética , Transporte Proteico , Proteínas SNARE/metabolismo , Transdução de Sinais , Proteína 2 Associada à Membrana da Vesícula/metabolismo
20.
J Am Soc Nephrol ; 20(7): 1504-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19406976

RESUMO

Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fósforo na Dieta/farmacologia , Adulto , Animais , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiologia , Doenças Cardiovasculares/epidemiologia , Bovinos , Células Cultivadas , Estudos Cross-Over , Modelos Animais de Doenças , Método Duplo-Cego , Endotélio Vascular/citologia , Humanos , Hiperfosfatemia/sangue , Hiperfosfatemia/complicações , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Fósforo/sangue , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fatores de Risco , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA