Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(21): 217001, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26066451

RESUMO

X-ray magnetic circular dichroism (XMCD) measurements on single-crystal and powder samples of Ba_{0.6}K_{0.4}Mn_{2}As_{2} show that the ferromagnetism below T_{C}≈100 K arises in the As 4p conduction band. No XMCD signal is observed at the Mn x-ray absorption edges. Below T_{C}, however, a clear XMCD signal is found at the As K edge which increases with decreasing temperature. The XMCD signal is absent in data taken with the beam directed parallel to the crystallographic c axis indicating that the orbital magnetic moment lies in the basal plane of the tetragonal lattice. These results show that the previously reported itinerant ferromagnetism is associated with the As 4p conduction band and that distinct local-moment antiferromagnetism and itinerant ferromagnetism with perpendicular easy axes coexist in this compound at low temperature.

2.
Phys Rev Lett ; 110(6): 067002, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432293

RESUMO

We have performed detailed studies of the temperature evolution of the electronic structure in Ba(Fe(1-x)Ru(x))(2)As(2) using angle resolved photoemission spectroscopy. Surprisingly, we find that the binding energy of both hole and electron bands changes significantly with temperature in both pure and Ru substituted samples. The hole and electron pockets are well nested at low temperature in unsubstituted (BaFe(2)As(2)) samples, which likely drives the spin density wave and resulting antiferromagnetic order. Upon warming, this nesting is degraded as the hole pocket shrinks and the electron pocket expands. Our results demonstrate that the temperature dependent nesting may play an important role in driving the antiferromagnetic-paramagnetic phase transition.

3.
Phys Rev Lett ; 111(15): 157001, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160618

RESUMO

Inelastic neutron scattering measurements of paramagnetic SrCo2As2 at T=5 K reveal antiferromagnetic (AFM) spin fluctuations that are peaked at a wave vector of Q(AFM)=(1/2,1/2,1) and possess a large energy scale. These stripe spin fluctuations are similar to those found in AFe2As2 compounds, where spin-density wave AFM is driven by Fermi surface nesting between electron and hole pockets separated by Q(AFM). SrCo2As2 has a more complex Fermi surface and band-structure calculations indicate a potential instability toward either a ferromagnetic or stripe AFM ground state. The results suggest that stripe AFM magnetism is a general feature of both iron and cobalt-based arsenides and the search for spin fluctuation-induced unconventional superconductivity should be expanded to include cobalt-based compounds.

4.
Phys Rev Lett ; 109(15): 157204, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102362

RESUMO

Magnetism in La(1-x)Sr(x)CoO(3) as a function of doping is investigated with x-ray absorption spectroscopy and x-ray magnetic circular dicrhoism at the O K edge, and corresponding first principles electronic structure calculations. For small x, the spectra are consistent with the formation of ferromagnetic clusters occurring within a nonmagnetic insulating matrix. Sr-induced, magnetic O-hole states form just above E(F) and grow with increasing Sr doping. Density functional calculations for x=0 yield a nonmagnetic ground state with the observed rhombohedral distortion and indicates that doping introduces holes at the Fermi level in magnetic states with significant O 2p and Co t(2g) character for the undistorted pseudocubic structure. Supercell calculations show stronger magnetism on oxygen atoms having more Sr neighbors.

5.
Phys Rev Lett ; 108(8): 087005, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463561

RESUMO

The compound BaMn2As2 with the tetragonal ThCr2Si2 structure is a local-moment antiferromagnetic insulator with a Néel temperature T(N)=625 K and a large ordered moment µ=3.9µ(B)/Mn. We demonstrate that this compound can be driven metallic by partial substitution of Ba by K while retaining the same crystal and antiferromagnetic structures together with nearly the same high T(N) and large µ. Ba(1-x)K(x)Mn2As2 is thus the first metallic ThCr2Si2-type MAs-based system containing local 3d transition metal M magnetic moments, with consequences for the ongoing debate about the local-moment versus itinerant pictures of the FeAs-based superconductors and parent compounds. The Ba(1-x)K(x)Mn2As2 class of compounds also forms a bridge between the layered iron pnictides and cuprates and may be useful to test theories of high T(c) superconductivity.

6.
Phys Rev Lett ; 109(16): 167003, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215117

RESUMO

The spin fluctuation spectra from nonsuperconducting Cu-substituted, and superconducting Co-substituted, BaFe(2)As(2) are compared quantitatively by inelastic neutron scattering measurements and are found to be indistinguishable. Whereas diffraction studies show the appearance of incommensurate spin-density wave order in Co and Ni substituted samples, the magnetic phase diagram for Cu substitution does not display incommensurate order, demonstrating that simple electron counting based on rigid-band concepts is invalid. These results, supported by theoretical calculations, suggest that substitutional impurity effects in the Fe plane play a significant role in controlling magnetism and the appearance of superconductivity, with Cu distinguished by enhanced impurity scattering and split-band behavior.

7.
Phys Rev Lett ; 106(25): 257001, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770663

RESUMO

Neutron diffraction studies of Ba(Fe(1-x)Co(x))(2)As)(2) reveal that commensurate antiferromagnetic order gives way to incommensurate magnetic order for Co compositions between 0.056 < x < 0.06. The incommensurability has the form of a small transverse splitting (0, ± ε, 0) from the commensurate antiferromagnetic propagation vector Q(AFM) = (1,0,1) (in orthorhombic notation) where ε ≈ 0.02-0.03 and is composition dependent. The results are consistent with the formation of a spin-density wave driven by Fermi surface nesting of electron and hole pockets and confirm the itinerant nature of magnetism in the iron arsenide superconductors.

8.
J Phys Condens Matter ; 19(18): 186222, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-21691003

RESUMO

The electronic structure and x-ray magnetic circular dichroism (XMCD) spectra of UGe(2) at the U N(4,5), N(2,3) and Ge K and L(2,3) edges are investigated theoretically from first principles, using the fully relativistic spin-polarized Dirac linear muffin-tin orbital (LMTO) band structure method. The electronic structure is obtained with the local spin-density approximation (LSDA), as well as the LSDA+U method. The origin of the XMCD spectra in the compound is examined.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026225, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196702

RESUMO

We numerically investigate decoherence of a two-spin system (central system) by a bath of many spins 1/2. By carefully adjusting parameters, the dynamical regime of the bath has been varied from quantum chaos to regular, while all other dynamical characteristics have been kept practically intact. We explicitly demonstrate that for a many-body quantum bath, the onset of quantum chaos leads to significantly faster and stronger decoherence compared to an equivalent non-chaotic bath. Moreover, the non-diagonal elements of the system's density matrix, the linear entropy, and the fidelity of the central system decay differently for chaotic and non-chaotic baths. Therefore, knowledge of the basic parameters of the bath (strength of the system-bath interaction, and the bath's spectral density of states) is not always sufficient, and much finer details of the bath's dynamics can strongly affect the decoherence process.

10.
Phys Rev Lett ; 101(22): 227205, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19113520

RESUMO

Inelastic neutron scattering measurements of the magnetic excitations in CaFe2As2 indicate that the spin wave velocity in the Fe layers is exceptionally large and similar in magnitude to the cuprates. However, the spin wave velocity perpendicular to the layers is at least half as large that in the layer, so that the magnetism is more appropriately categorized as anisotropic three-dimensional, in contrast to the two-dimensional cuprates. Exchange constants derived from band structure calculations predict spin wave velocities that are consistent with the experimental data.

11.
Phys Rev Lett ; 101(17): 177005, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999778

RESUMO

We use angle-resolved photoemission spectroscopy to investigate the electronic properties of the newly discovered iron-arsenic superconductor Ba_(1-x)K_(x)Fe_(2)As_(2) and nonsuperconducting BaFe_(2)As_(2). Our study indicates that the Fermi surface of the undoped, parent compound BaFe_(2)As_(2) consists of hole pocket(s) at Gamma (0,0) and larger electron pocket(s) at X (1,0), in general agreement with full-potential linearized plane wave calculations. Upon doping with potassium, the hole pocket expands and the electron pocket becomes smaller with its bottom approaching the chemical potential. Such an evolution of the Fermi surface is consistent with hole doping within a rigid-band shift model. Our results also indicate that the full-potential linearized plane wave calculation is a reasonable approach for modeling the electronic properties of both undoped and K-doped iron arsenites.

12.
Phys Rev Lett ; 99(22): 227003, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18233317

RESUMO

We propose the projected BCS wave function as the ground state for the doped Mott insulator SrCu2(BO3)2 on the Shastry-Sutherland lattice. At half filling this wave function yields the exact ground state. Adding mobile charge carriers, we find a strong asymmetry between electron and hole doping. Upon electron doping an unusual metal with strong valence bond correlations forms. Hole doped systems are d-wave resonating valence bond superconductors in which superconductivity is strongly enhanced by the emergence of spatially varying plaquette bond order.

13.
Phys Rev Lett ; 98(24): 247205, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17677990

RESUMO

X-ray magnetic circular dichroism (XMCD) measurements and density functional theory (DFT) are used to study the electronic conduction states in Gd5(Ge(1-x)Si(x))4 materials through the first-order bond-breaking magnetostructural transition responsible for their giant magnetocaloric effect. Spin-dependent hybridization between Ge 4p and Gd 5d conduction states, which XMCD senses through the induced magnetic polarization in Ge ions, enables long-range Ruderman-Kittel-Kasuya-Yosida ferromagnetic interactions between Gd 4f moments in adjacent Gd slabs connected by Ge(Si) bonds. These interactions are strong below but weaken above the Ge(Si) bond-breaking transition that destroys 3D ferromagnetic order.

14.
Phys Rev Lett ; 97(3): 037204, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16907541

RESUMO

In this work, we consider decoherence of a central spin by a spin bath. In order to study the nonperturbative decoherence regimes, we develop an efficient mean-field-based method for modeling the spin-bath decoherence, based on the representation of the central spin density matrix. The method can be applied to longitudinal and transverse relaxation at different external fields. In particular, by modeling large-size quantum systems (up to 16 000 bath spins), we make controlled predictions for the slow long-time decoherence of the central spin.

15.
Phys Rev Lett ; 90(6): 067201, 2003 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-12633322

RESUMO

The dynamics of real magnets is often governed by several interacting processes taking place simultaneously at different length scales. For dynamical simulations, the relevant length scales should be coupled, and the energy transfer accurately described. We show that in this case the micromagnetic theory is not always reliable. We present a coarse-graining approach applicable to nonlinear problems, which provides a unified description of all relevant length scales, allowing a smooth, seamless coupling. The simulations performed on model systems show that the coarse-graining approach achieves nearly the precision of all-atom simulations.

16.
17.
Phys Rev Lett ; 90(21): 210401, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12786540

RESUMO

We study numerically the damping of quantum oscillations and the dynamics of the density matrix in model many-spin systems decohered by a spin bath. We show that oscillations of some density matrix elements can persist with considerable amplitude long after other elements, along with the entropy, have come close to saturation, i.e., when the system has been decohered almost completely. The oscillations exhibit very slow decay, and may be observable in experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA