Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630555

RESUMO

PURPOSE: Osimertinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) indicated for the treatment of EGFR mutated (EGFRm)-driven lung adenocarcinomas. Osimertinib significantly improves progression-free survival in first-line treated patients with EGFRm advanced NSCLC. Despite the durable disease control, the majority of patients receiving osimertinib eventually develop disease progression. EXPERIMENTAL DESIGN: ctDNA profiling analysis on-progression plasma samples from patients treated with osimertinib in both first (Phase 3, FLAURA trial) and second-line trials (Phase 3, AURA3 trial) revealed a high prevalence of PIK3CA/AKT/PTEN alterations. In vitro and in vivo evidence using CRISPR engineered NSCLC cell lines and PXD models support a functional role for PIK3CA and PTEN mutations in the development of osimertinib resistance. RESULTS: These alterations are functionally relevant as EGFRm NSCLC cells with engineered PIK3CA/AKT/PTEN alterations develop resistance to osimertinib and can be re-sensitized by treatment with the combination of osimertinib and the AKT inhibitor capivasertib. Moreover, xenograft and PDX in vivo models with PIK3CA/AKT/PTEN alterations display limited sensitivity to osimertinib relative to models without alteration, and in these double mutant models capivasertib and osimertinib combination elicits an improved anti-tumor effect versus osimertinib alone. CONCLUSIONS: Together, this approach offers a potential treatment strategy for patients with EGFRm-driven NSCLC that have a sub-optimal response, or develop resistance, to osimertinib through PIK3CA/AKT/PTEN alterations.

2.
J Thorac Oncol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029876

RESUMO

INTRODUCTION: Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-sensitizing and -resistance mutations may be detected in plasma via circulating tumor DNA (ctDNA). ctDNA level changes reflect alterations in tumor burden and could be a dynamic indicator of treatment effect. This analysis aimed to determine whether longitudinal EGFR-mutation ctDNA testing could detect progressive disease (PD) before radiologic detection. METHODS: This was a retrospective, exploratory ctDNA analysis in two phase 3 trials (FLAURA, NCT02296125; AURA3, NCT02151981). Patients had treatment-naïve (FLAURA) or EGFR-TKI pre-treated (AURA3) advanced non-small cell lung cancer (NSCLC) with EGFR mutations and on-study PD (RECIST), with a baseline ctDNA result and EGFR-mutation ctDNA monitoring beyond Cycle 3 Day 1. Patients received osimertinib versus comparator EGFR-TKIs (FLAURA) or chemotherapy (AURA3). Outcomes included time from ctDNA PD to RECIST PD, and to first subsequent treatment (FST; FLAURA only). RESULTS: ctDNA PD preceded/co-occurred with RECIST-defined PD in 93/146 (64%) patients in FLAURA and 82/146 (56%) in AURA3. Median time from ctDNA PD to RECIST-defined PD (months) was 3.4 and 2.6 in the osimertinib and comparator EGFR-TKI arms (FLAURA) and 2.8 and 1.5 in the osimertinib and chemotherapy arms (AURA3). In FLAURA, median time from ctDNA PD to FST (months) was 6.0 and 4.7 in the osimertinib (n = 51) and comparator EGFR-TKI arms (n = 70). CONCLUSIONS: Among patients with EGFR mutation-positive advanced NSCLC receiving EGFR-TKI or chemotherapy with ctDNA data and RECIST-defined PD, ctDNA PD preceded/co-occurred with RECIST-defined PD in approximately 60% of cases. Longitudinal ctDNA monitoring may detect PD before radiologic PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA