Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Dyn ; 245(4): 497-507, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26813283

RESUMO

BACKGROUND: Fras1 encodes an extracellular matrix protein that is critical for the establishment of the epidermal basement membrane during gestation. In humans, mutations in FRAS1 cause Fraser Syndrome (FS), a pleiotropic condition with many clinical presentations such as limb, eye, kidney, and craniofacial deformations. Many of these defects are mimicked by loss of Fras1 in mice, and are preceded by the formation of epidermal blisters in utero. RESULTS: In this study, we identified a novel ENU-derived rounded foot (rdf) mouse mutant with highly penetrant hindlimb soft-tissue syndactyly, among other structural defects. Mapping and sequencing revealed that rdf is a novel loss-of-function nonsense allele of Fras1 (Fras1(rdf)). Focusing on the limb, we found that the Fras1(rdf) syndactyly phenotype originates from loss of interdigital cell death (ICD). Despite normal expression of bone morphogenetic protein (BMP) ligands and their receptors, the BMP downstream target gene Msx2, which is also necessary and sufficient to promote ICD, was down-regulated in the interdigital regions of Fras1(rdf) hindlimb buds. CONCLUSIONS: The close correlation between limb bud epidermal blistering, decreased Msx2 expression, and reduced ICD in the Fras1(rdf) hindlimb buds suggests that epithelium detachment from the mesenchyme may create a physical gap that interrupts the transmission of BMP, among other signals, resulting in soft tissue syndactyly.


Assuntos
Apoptose , Proteínas da Matriz Extracelular/metabolismo , Membro Posterior/embriologia , Mutação , Sindactilia/embriologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas da Matriz Extracelular/genética , Membro Posterior/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Sindactilia/genética , Sindactilia/patologia
2.
Proc Natl Acad Sci U S A ; 110(48): 19444-9, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218621

RESUMO

In the trachea and bronchi of the mouse, airway smooth muscle (SM) and cartilage are localized to complementary domains surrounding the airway epithelium. Proper juxtaposition of these tissues ensures a balance of elasticity and rigidity that is critical for effective air passage. It is unknown how this tissue complementation is established during development. Here we dissect the developmental relationship between these tissues by genetically disrupting SM formation (through Srf inactivation) or cartilage formation (through Sox9 inactivation) and assessing the impact on the remaining lineage. We found that, in the trachea and main bronchi, loss of SM or cartilage resulted in an increase in cell number of the remaining lineage, namely the cartilage or SM, respectively. However, only in the main bronchi, but not in the trachea, did the loss of SM or cartilage lead to a circumferential expansion of the remaining cartilage or SM domain, respectively. In addition to SM defects, cartilage-deficient tracheas displayed epithelial phenotypes, including decreased basal cell number, precocious club cell differentiation, and increased secretoglobin expression. These findings together delineate the mechanisms through which a cell-autonomous disruption of one structural tissue can have widespread consequences on upper airway function.


Assuntos
Brônquios/embriologia , Cartilagem/embriologia , Morfogênese/fisiologia , Músculo Liso/embriologia , Traqueia/embriologia , Traqueomalácia/embriologia , Animais , Imunofluorescência , Hibridização In Situ , Pulmão/embriologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOX9/metabolismo
5.
Dev Dyn ; 241(9): 1432-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22711520

RESUMO

BACKGROUND: Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS: To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS: Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Pulmão/metabolismo , Fatores de Transcrição/genética , Animais , Embrião de Mamíferos , Perfilação da Expressão Gênica/métodos , Genoma/genética , Ensaios de Triagem em Larga Escala , Hibridização In Situ/métodos , Camundongos , Morfogênese/genética , Mucosa Respiratória/citologia , Mucosa Respiratória/embriologia , Mucosa Respiratória/metabolismo , Fatores de Transcrição/metabolismo
6.
Sci China Life Sci ; 62(10): 1375-1380, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31463736

RESUMO

Crouzon syndrome is the result of a gain-of-function point mutation in FGFR2. Mimicking the human mutation, a mouse model of Crouzon syndrome (Fgfr2342Y) recapitulates patient deformities, including failed tracheal cartilage segmentation, resulting in a cartilaginous sleeve in the homozygous mutants. We found that the Fgfr2C342Y/C342Y mutants exhibited an increase in chondrocytes prior to segmentation. This increase is due at least in part to over proliferation. Genetic ablation of chondrocytes in the mutant led to restoration of segmentation in the lateral but not central portion of the trachea. These results suggest that in the Fgfr2C342Y/C342Y mutants, increased cartilage cell proliferation precedes and contributes to the disruption of cartilage segmentation in the developing trachea.


Assuntos
Cartilagem/metabolismo , Disostose Craniofacial/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Traqueia/metabolismo , Animais , Osso e Ossos/metabolismo , Proliferação de Células , Disostose Craniofacial/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/metabolismo , Camundongos/embriologia , Osteoblastos/patologia , Fenótipo , Mutação Puntual , Gravidez , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA