RESUMO
Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendênciasRESUMO
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Assuntos
Hidroliases , Lignina , Populus , Populus/genética , Populus/metabolismo , Populus/enzimologia , Lignina/metabolismo , Hidroliases/metabolismo , Hidroliases/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Xilema/genéticaRESUMO
Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein-protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacterium Nostoc punctiforme is capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacterium Synechocystis sp. strain PCC6803 interact in a similar manner to their N. punctiforme counterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Fímbrias Bacterianas/fisiologia , Luz , Fototaxia , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Nostoc/fisiologiaRESUMO
Degradation and loss of natural habitat is the major driver of the current global biodiversity crisis. Most habitat conservation efforts to date have targeted small areas of highly threatened habitat, but emerging debate suggests that retaining large intact natural systems may be just as important. We reconcile these perspectives by integrating fine-resolution global data on habitat condition and species assemblage turnover to identify Earth's high-value biodiversity habitat. These are areas in better condition than most other locations predicted to have once supported a similar assemblage of species and are found within both intact regions and human-dominated landscapes. However, only 18.6% of this high-value habitat is currently protected globally. Averting permanent biodiversity loss requires clear, spatially explicit targets for retaining these unprotected high-value habitats.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Planeta Terra , Animais , Ecossistema , HumanosRESUMO
Understanding how biodiversity is changing over space and time is crucial for well-informed decisions that help retain Earth's biological heritage over the long term. Tracking changes in biodiversity through ecosystem accounting provides this important information in a systematic way and readily enables linking to other relevant environmental and economic data to provide an integrated perspective. We derived biodiversity accounts for the Murray-Darling Basin, Australia's largest catchment. We assessed biodiversity change from 2010 to 2015 for all vascular plants, all waterbirds, and 10 focal species. We applied a scalable habitat-based assessment approach that combined expected patterns in the distribution of biodiversity from spatial biodiversity models with a time series of spatially complete data on habitat condition derived from remote sensing. Changes in biodiversity from 2010 to 2015 varied across regions and biodiversity features. For the entire Murray-Darling Basin, the expected persistence of vascular plants increased slightly from 2010 to 2015 (from 86.8% to 87.1%), mean species richness of waterbirds decreased slightly (from 12.5 to 12.3 species), whereas for the focal species the estimated area of habitat increased for 8 species and decreased for 1 species. Regions in the north of the Murray-Darling Basin generally had decreases in biodiversity from 2010 to 2015, whereas in the south biodiversity was stable or increased. Our results demonstrate the benefits of habitat-based biodiversity assessments in providing fully scalable biodiversity accounts across different biodiversity features, consistent with the United Nations System of Environmental Economic Accounting - Ecosystem Accounting (SEEA EA) framework.
Evaluación de la Biodiversidad con base en el Hábitat para la Contabilización de Ecosistemas en la Cuenca Murray-Darling Resumen El conocimiento sobre cómo está cambiando la biodiversidad en el tiempo y en el espacio es crucial para las decisiones bien informadas que ayudan a retener la herencia biológica de la Tierra a largo plazo. El seguimiento de cambios en la biodiversidad mediante la contabilidad de los ecosistemas proporciona esta información importante de manera sistémica y permite fácilmente la conexión con otros datos ambientales y económicos relevantes para proporcionar una perspectiva integrada. Derivamos la contabilidad de la biodiversidad para la Cuenca Murray-Darling, la mayor cuenca de Australia. Analizamos los cambios en la biodiversidad entre 2010 y 2015 de todas las plantas vasculares, todas las aves acuáticas y diez especies focales. Aplicamos una estrategia de evaluación basada en el hábitat que combinó los patrones esperados en la distribución de la biodiversidad a partir de modelos espaciales de la biodiversidad con una serie temporal de datos espacialmente completos derivados de la teledetección de la condición del hábitat. Los cambios en la biodiversidad entre 2010 y 2015 variaron entre las regiones y las características de la biodiversidad. Para toda la Cuenca Murray-Darling, la persistencia esperada de las plantas vasculares incrementó ligeramente durante los años de estudio (de 86.8% a 87.1%), la riqueza promedio de especies de aves acuáticas disminuyó un poco (de 12.5 a 12.3 especies), mientras que el área estimada del hábitat de las especies focales incrementó para ocho especies y disminuyó para una. Las regiones al norte de la cuenca tuvieron disminuciones generalizadas de la biodiversidad entre 2010 y 2015, mientras al sur, la biodiversidad se mantuvo estable o incrementó. Nuestros resultados demuestran los beneficios que tienen las evaluaciones de la biodiversidad basadas en el hábitat para proporcionar una contabilidad de la biodiversidad completamente escalable entre las diferentes características de la biodiversidad, acorde con la estructura del Sistema de Contabilidad Económico-Ambiental - Contabilidad de los Ecosistemas (SEEA EA) de las Naciones Unidas.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , BiodiversidadeRESUMO
Hormogonia are motile filaments produced by many filamentous cyanobacteria that function in dispersal, phototaxis and the establishment of nitrogen-fixing symbioses. The gene regulatory network promoting hormogonium development is initiated by the hybrid histidine kinase HrmK, which in turn activates a sigma factor cascade consisting of SigJ, SigC and SigF. In this study, cappable-seq was employed to define the primary transcriptome of developing hormogonia in the model filamentous cyanobacterium Nostoc punctiforme ATCC 29133 in both the wild-type, and sigJ, sigC and sigF mutant strains 6 h post-hormogonium induction. A total of 1544 transcriptional start sites (TSSs) were identified that are associated with protein-coding genes and are expressed at levels likely to lead to biologically relevant transcripts in developing hormogonia. TSS expression among the sigma-factor deletion strains was highly consistent with previously reported gene expression levels from RNAseq experiments, and support the current working model for the role of these genes in hormogonium development. Analysis of SigJ-dependent TSSs corroborated the presence of the previously identified J-Box in the -10 region of SigJ-dependent promoters. Additionally, the data presented provides new insights on sequence conservation within the -10 regions of both SigC- and SigF-dependent promoters, and demonstrates that SigJ and SigC coordinate complex co-regulation not only of hormogonium-specific genes at different loci, but within an individual operon. As progress continues on defining the hormogonium gene regulatory network, this data set will serve as a valuable resource.
Assuntos
Regulação Bacteriana da Expressão Gênica , Nostoc , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nostoc/genética , Nostoc/metabolismo , Fator sigma/genética , TranscriptomaRESUMO
Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis-like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF-GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF-GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity.
Assuntos
Nostoc/genética , Proteínas de Bactérias/metabolismo , Movimento Celular , Quimiotaxia/fisiologia , Fímbrias Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Locomoção , Nostoc/metabolismoRESUMO
Understanding plant-microbe interactions requires examination of root exudation under nutrient stress using standardized and reproducible experimental systems. We grew Brachypodium distachyon hydroponically in fabricated ecosystem devices (EcoFAB 2.0) under three inorganic nitrogen forms (nitrate, ammonium, and ammonium nitrate), followed by nitrogen starvation. Analyses of exudates with liquid chromatography-tandem mass spectrometry, biomass, medium pH, and nitrogen uptake showed EcoFAB 2.0's low intratreatment data variability. Furthermore, the three inorganic nitrogen forms caused differential exudation, generalized by abundant amino acids-peptides and alkaloids. Comparatively, nitrogen deficiency decreased nitrogen-containing compounds but increased shikimates-phenylpropanoids. Subsequent bioassays with two shikimates-phenylpropanoids (shikimic and p-coumaric acids) on soil bacteria or Brachypodium seedlings revealed their distinct capacity to regulate both bacterial and plant growth. Our results suggest that (i) Brachypodium alters exudation in response to nitrogen status, which can affect rhizobacterial growth, and (ii) EcoFAB 2.0 is a valuable standardized plant research tool.
Assuntos
Brachypodium , Ecossistema , Brachypodium/microbiologia , Nitrogênio , Ácido Chiquímico , BiomassaRESUMO
BACKGROUND: Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue. For example, previous work showed that heterologous expression of a coliphage S-adenosylmethionine hydrolase (AdoMetase) was an effective approach to reduce lignin in the model plant Arabidopsis. The efficacy of this engineering strategy remains to be evaluated in bioenergy crops. RESULTS: We studied the impact of expressing AdoMetase on lignin synthesis in sorghum (Sorghum bicolor L. Moench). Lignin content, monomer composition, and size, as well as biomass saccharification efficiency were determined in transgenic sorghum lines. The transcriptome and metabolome were analyzed in stems at three developmental stages. Plant growth and biomass composition was further evaluated under field conditions. Results evidenced that lignin was reduced by 18% in the best transgenic line, presumably due to reduced activity of the S-adenosylmethionine-dependent O-methyltransferases involved in lignin synthesis. The modified sorghum features altered lignin monomer composition and increased lignin molecular weights. The degree of methylation of glucuronic acid on xylan was reduced. These changes enabled a ~20% increase in glucose yield after biomass pretreatment and saccharification compared to wild type. RNA-seq and untargeted metabolomic analyses evidenced some pleiotropic effects associated with AdoMetase expression. The transgenic sorghum showed developmental delay and reduced biomass yields at harvest, especially under field growing conditions. CONCLUSIONS: The expression of AdoMetase represents an effective lignin engineering approach in sorghum. However, considering that this strategy potentially impacts multiple S-adenosylmethionine-dependent methyltransferases, adequate promoters for fine-tuning AdoMetase expression will be needed to mitigate yield penalty.
RESUMO
Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.
RESUMO
Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Assuntos
Biodiversidade , Mudança Climática , Extinção BiológicaRESUMO
Metabolomics has a long history of using cosine similarity to match experimental tandem mass spectra to databases for compound identification. Here we introduce the Blur-and-Link (BLINK) approach for scoring cosine similarity. By bypassing fragment alignment and simultaneously scoring all pairs of spectra using sparse matrix operations, BLINK is over 3000 times faster than MatchMS, a widely used loop-based alignment and scoring implementation. Using a similarity cutoff of 0.7, BLINK and MatchMS had practically equivalent identification agreement, and greater than 99% of their scores and matching ion counts were identical. This performance improvement can enable calculations to be performed that would typically be limited by time and available computational resources.
RESUMO
Reliable projections of climate-change impacts on biodiversity are vital in formulating conservation and management strategies that best retain biodiversity into the future. While recent modelling has focussed largely on individual species, macroecology has the potential to add significant value to these efforts, by incorporating important community-level constraints and processes. Here we show how a new dynamic macroecological approach can project climate-change impacts collectively across all species in a diverse taxonomic group, overcoming shortfalls in our knowledge of biodiversity, while incorporating the key processes of dispersal and community assembly. Our approach applies a recently published technique (DynamicFOAM) to predict the present composition of every community, which form the initial conditions for a new metacommunity model (M-SET) that projects changes in composition over time, under specified climate and habitat scenarios. Applying this approach at fine resolution to plant biodiversity in Tasmania (2,051 species; 1,157,587 communities), we project high average turnover in community composition from 2010 to 2100 (mean Sorensen's dissimilarity = 0.71 (±7.0 × 10-5 )), with major reductions in species richness (32.9 (±0.02) species lost per community) and no plant species benefitting from climate change in the long term. We also demonstrate how our modelling approach can identify habitat likely to be of high value for retaining rare and poorly reserved species under climate change. Our analyses highlight the potential value of this dynamic macroecological approach, that incorporates key ecological processes in projecting climate change impacts for all species simultaneously and uses simple macroecological inputs that can be derived even for highly diverse and poorly studied taxa.
RESUMO
In response to climate change and other threatening processes there is renewed interest in the role of refugia and refuges. In bioregions that experience drought and fire, micro-refuges can play a vital role in ensuring the persistence of species. We develop and apply an approach to identifying potential micro-refuges based on a time series of remotely sensed vegetation greenness (fraction of photosynthetically active radiation intercepted by the sunlit canopy; fPAR). The primary data for this analysis were NASA MODIS 16-day L3 Global 250 m (MOD13Q1) satellite imagery. This method draws upon relevant ecological theory (source sink habitats, habitat templet) to calculate a micro-refuge index, which is analyzed for each of the major vegetation ecosystems in the case-study region (the Great Eastern Ranges of New South Wales, Australia). Potential ecosystem greenspots were identified, at a range of thresholds, based on an index derived from: the mean and coefficient of variance (COV) of fPAR over the 10-year time series; the minimum mean annual fPAR; and the COV of the 12 values of mean monthly fPAR. These greenspots were mapped and compared with (1) an index of vascular plant species composition, (2) environmental variables, and (3) protected areas. Potential micro-refuges were found within all vegetation ecosystem types. The total area of ecosystem greenspots within the upper 25% threshold was 48 406 ha; around 0.2% of the total area of native vegetation (23.9 x 10(6) ha) in the study region. The total area affected by fire was 3.4 x 10(6) ha. The results of the environmental diagnostic analysis suggest deterministic controls on the geographical distribution of potential micro-refuges that may continue to function under climate change. The approach is relevant to other regions of the world where the role of micro-refuges in the persistence of species is recognized, including across the world's arid zones and, in particular, for the Australian, southern African, and South American continents. Micro-refuge networks may play an important role in maintaining beta-diversity at the bio-region scale and contribute to the stability, resilience, and adaptive capacity of ecosystems in the face of ever-growing pressures from human-forced climate change, land use, and other threatening processes.
Assuntos
Mudança Climática , Secas , Ecossistema , Incêndios , Modelos Biológicos , Animais , Fenômenos Geológicos , Humanos , New South Wales , Plantas , Fatores de TempoRESUMO
For many taxonomic groups, sparse information on the spatial distribution of biodiversity limits our capacity to answer a variety of theoretical and applied ecological questions. Modelling community-level attributes (α- and ß-diversity) over space can help overcome this shortfall in our knowledge, yet individually, predictions of α- or ß-diversity have their limitations. In this study, we present a novel approach to combining models of α- and ß-diversity, with sparse survey data, to predict the community composition for all sites in a region. We applied our new approach to predict land snail community composition across New Zealand. As we demonstrate, these predictions of metacommunity composition have diverse potential applications, including predicting γ-diversity for any set of sites, identifying target areas for conservation reserves, locating priority areas for future ecological surveys, generating realistic compositional data for metacommunity models and simultaneously predicting the distribution of all species in a taxon consistent with known community diversity patterns.
Assuntos
Biodiversidade , Ecologia/métodos , Modelos Biológicos , Animais , Caramujos/fisiologiaRESUMO
Cyanobacteria are prokaryotes capable of oxygenic photosynthesis, and frequently, nitrogen fixation as well. As a result, they contribute substantially to global primary production and nitrogen cycles. Furthermore, the multicellular filamentous cyanobacteria in taxonomic subsections IV and V are developmentally complex, exhibiting an array of differentiated cell types and filaments, including motile hormogonia, making them valuable model organisms for studying development. To investigate the role of sigma factors in the gene regulatory network (GRN) controlling hormogonium development, a combination of genetic, immunological, and time-resolved transcriptomic analyses were conducted in the model filamentous cyanobacterium Nostoc punctiforme, which, unlike other common model cyanobacteria, retains the developmental complexity of field isolates. The results support a model where the hormogonium GRN is driven by a hierarchal sigma factor cascade, with sigJ activating the expression of both sigC and sigF, as well as a substantial portion of additional hormogonium-specific genes, including those driving changes to cellular architecture. In turn, sigC regulates smaller subsets of genes for several processes, plays a dominant role in promoting reductive cell division, and may also both positively and negatively regulate sigJ to reinforce the developmental program and coordinate the timing of gene expression, respectively. In contrast, the sigF regulon is extremely limited. Among genes with characterized roles in hormogonium development, only pilA shows stringent sigF dependence. For sigJ-dependent genes, a putative consensus promoter was also identified, consisting primarily of a highly conserved extended -10 region, here designated a J-Box, which is widely distributed among diverse members of the cyanobacterial lineage.IMPORTANCE Cyanobacteria are integral to global carbon and nitrogen cycles, and their metabolic capacity coupled with their ease of genetic manipulation make them attractive platforms for applications such as biomaterial and biofertilizer production. Achieving these goals will likely require a detailed understanding and precise rewiring of these organisms' GRNs. The complex phenotypic plasticity of filamentous cyanobacteria has also made them valuable models of prokaryotic development. However, current research has been limited by focusing primarily on a handful of model strains which fail to reflect the phenotypes of field counterparts, potentially limiting biotechnological advances and a more comprehensive understanding of developmental complexity. Here, using Nostoc punctiforme, a model filamentous cyanobacterium that retains the developmental range of wild isolates, we define previously unknown definitive roles for a trio of sigma factors during hormogonium development. These findings substantially advance our understanding of cyanobacterial development and gene regulation and could be leveraged for future applications.
Assuntos
Proteínas de Bactérias/genética , Fímbrias Bacterianas/genética , Nostoc/crescimento & desenvolvimento , Nostoc/genética , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Regulon , Fator sigma/metabolismoRESUMO
The opium poppy Papaver somniferum contains an array of opiates. There is a variety of methods of preparation that can be used by people with opiate dependence, with patterns of use determined by numerous factors including cost, safety, potency and legal status. The objective of this study was to determine the frequency and nature of poppy seed tea (PST) use by opiate-dependent patients in the form of a written questionnaire. The study took place at the Community Alcohol and Drug Clinic, Wellington, New Zealand, and comprised 24 opiate-dependent patients attending the clinic. A total of 11 of 24 (46%) patients reported having used PST. In five patients currently using PST it represented the major source of opiates, and two had managed to withdraw from use of other opiates with regular PST use. Patients reported a median onset of action of 15 minutes and an effect lasting a median of 24 hours. The major limitation of PST use was the foul taste. PST is used commonly by opiate-dependent patients attending an alcohol and drug clinic in New Zealand. The use of PST as the major source of opiates could be considered favourably within 'harm reduction' philosophies, because of its low cost, legal availability and oral route of administration. Conversely, there is the potential for PST to act as a 'gateway drug' by inducing opioid dependence and introducing people to the culture of drug abuse.
Assuntos
Bebidas , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Papaver , Sementes , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nova Zelândia/epidemiologia , Preparações de Plantas , Prevalência , Inquéritos e QuestionáriosRESUMO
Underdamped terahertz-frequency delocalized phonon-like modes have long been suggested to play a role in the biological function of DNA. Such phonon modes involve the collective motion of many atoms and are prerequisite to understanding the molecular nature of macroscopic conformational changes and related biochemical phenomena. Initial predictions were based on simple theoretical models of DNA. However, such models do not take into account strong interactions with the surrounding water, which is likely to cause phonon modes to be heavily damped and localized. Here we apply state-of-the-art femtosecond optical Kerr effect spectroscopy, which is currently the only technique capable of taking low-frequency (GHz to THz) vibrational spectra in solution. We are able to demonstrate that phonon modes involving the hydrogen bond network between the strands exist in DNA at physiologically relevant conditions. In addition, the dynamics of the solvating water molecules is slowed down by about a factor of 20 compared with the bulk.