Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202313580, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38340075

RESUMO

The adsorption of anions onto metal surfaces is important in many applications including effective (electro)catalyst design, metal surface modification, and contaminant removal in wastewater treatment. In electrocatalysis, anions can be both reactive intermediates or site-blocking spectators, where their adsorption strength therefore dictates the rate of reaction. In this work, we have measured the adsorption energy of a series of carboxylic acids on a Pt (111) single-crystal electrode surface from aqueous solution. We find that the adsorption strength of the carboxylate anion is linearly correlated with its acid-dissociation constant (pKa) and therefore the heterolytic O-H bond dissociation strength in solution. Using density functional theory modeling, we split the anion adsorption energy into a sum of the adsorption energy and electron affinity of a neutral (carboxyl) radical. Surprisingly, the adsorption energy of the carboxyl radicals are similar and therefore the large difference in electron affinity is what dictates anion adsorption strength; the greater the cost in energy to remove the electron from the anion upon adsorption, the weaker its binding. Therefore, at least within a class of anions with similar structure and surface binding atoms, both electron affinity and acidity are predictive descriptors of adsorption strength.

2.
PLoS Pathog ; 17(8): e1009803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352038

RESUMO

Several enveloped viruses, including herpesviruses attach to host cells by initially interacting with cell surface heparan sulfate (HS) proteoglycans followed by specific coreceptor engagement which culminates in virus-host membrane fusion and virus entry. Interfering with HS-herpesvirus interactions has long been known to result in significant reduction in virus infectivity indicating that HS play important roles in initiating virus entry. In this study, we provide a series of evidence to prove that specific sulfations as well as the degree of polymerization (dp) of HS govern human cytomegalovirus (CMV) binding and infection. First, purified CMV extracellular virions preferentially bind to sulfated longer chain HS on a glycoarray compared to a variety of unsulfated glycosaminoglycans including unsulfated shorter chain HS. Second, the fraction of glycosaminoglycans (GAG) displaying higher dp and sulfation has a larger impact on CMV titers compared to other fractions. Third, cell lines deficient in specific glucosaminyl sulfotransferases produce significantly reduced CMV titers compared to wild-type cells and virus entry is compromised in these mutant cells. Finally, purified glycoprotein B shows strong binding to heparin, and desulfated heparin analogs compete poorly with heparin for gB binding. Taken together, these results highlight the significance of HS chain length and sulfation patterns in CMV attachment and infectivity.


Assuntos
Membrana Celular/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Glicosaminoglicanos/química , Heparitina Sulfato/química , Polimerização , Internalização do Vírus , Animais , Membrana Celular/virologia , Infecções por Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Camundongos , Vírion
3.
J Allergy Clin Immunol ; 148(3): 813-821.e7, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33865872

RESUMO

BACKGROUND: Hereditary alpha-tryptasemia (HαT) is characterized by elevated basal serum tryptase due to increased copies of the TPSAB1 gene. Individuals with HαT frequently present with multisystem complaints, including anaphylaxis and seemingly functional gastrointestinal (GI) symptoms. OBJECTIVE: We sought to determine the prevalence of HαT in an irritable bowel syndrome cohort and associated immunologic characteristics that may distinguish patients with HαT from patients without HαT. METHODS: Tryptase genotyping by droplet digital PCR, flow cytometry, cytometry by time-of-flight, immunohistochemistry, and other molecular biology techniques was used. RESULTS: HαT prevalence in a large irritable bowel syndrome cohort was 5% (N = 8/158). Immunophenotyping of HαT PBMCs (N ≥ 27) revealed increased total and class-switched memory B cells. In the small bowel, expansion of tissue mast cells with expression of CD203c, HLA-DR, and FcεRI, higher intestinal epithelial cell pyroptosis, and increased class-switched memory B cells were observed. IgG profiles in sera from individuals with HαT (N = 21) significantly differed from those in individuals with quiescent Crohn disease (N = 20) and non-HαT controls (N = 19), with increased antibodies directed against GI-associated proteins identified in individuals with HαT. CONCLUSIONS: Increased mast cell number and intestinal epithelial cell pyroptosis in the small intestine, and class-switched memory B cells in both the gut and peripheral blood associated with IgG reactive to GI-related proteins, distinguish HαT from functional GI disease. These innate and adaptive immunologic findings identified in association with HαT are suggestive of subclinical intestinal inflammation in symptomatic individuals.


Assuntos
Gastroenteropatias , Doenças Genéticas Inatas , Imunoglobulina G/imunologia , Intestino Delgado/imunologia , Mastocitose , Triptases , Adulto , Células Epiteliais/imunologia , Feminino , Gastroenteropatias/sangue , Gastroenteropatias/genética , Gastroenteropatias/imunologia , Gastroenteropatias/patologia , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/patologia , Genótipo , Humanos , Imunoglobulina G/sangue , Intestino Delgado/citologia , Intestino Delgado/patologia , Masculino , Mastócitos/imunologia , Mastocitose/sangue , Mastocitose/genética , Mastocitose/imunologia , Mastocitose/patologia , Pessoa de Meia-Idade , Piroptose , Triptases/sangue , Triptases/genética , Adulto Jovem
4.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30282704

RESUMO

Cytomegalovirus secondary envelopment occurs in a virus-induced cytoplasmic assembly compartment (vAC) generated via a drastic reorganization of the membranes of the secretory and endocytic systems. Dynamin is a eukaryotic GTPase that is implicated in membrane remodeling and endocytic membrane fission events; however, the role of dynamin in cellular trafficking of viruses beyond virus entry is only partially understood. Mouse embryonic fibroblasts (MEF) engineered to excise all three isoforms of dynamin were infected with mouse cytomegalovirus (MCMV-K181). Immediate-early (IE1; m123) viral protein was detected in these triple dynamin knockout (TKO) cells, as well as in mock-induced parental MEF, at early times postinfection, although levels were reduced in TKO cells, indicating that virus entry was affected but not eliminated. Levels of IE1 protein and another viral early protein (m04) were normalized by 48 h postinfection; however, late protein (m55; gB) expression was reduced in infected TKO cells compared to parental MEF. Ultrastructural analysis revealed intact stages of nuclear virus maturation in both cases with equivalent numbers of nucleocapsids containing packaged viral DNA (C-capsids), indicating successful viral DNA replication, capsid assembly, and genome packaging. Most importantly, severe defects in virus envelopment were visualized in TKO cells but not in parental cells. Dynamin inhibitor (dynasore)-treated MEF showed a phenotype similar to TKO cells upon mouse cytomegalovirus infection, confirming the role of dynamin in late maturation processes. In summary, dynamin-mediated endocytic pathways are critical for the completion of cytoplasmic stages of cytomegalovirus maturation.IMPORTANCE Viruses are known to exploit specific cellular functions at different stages of their life cycle in order to replicate, avoid immune recognition by the host and to establish a successful infection. Cytomegalovirus (CMV)-infected cells are characterized by a prominent cytoplasmic inclusion (virus assembly compartment [vAC]) that is the site of virus maturation and envelopment. While endocytic membranes are known to be the functional components of vAC, knowledge of specific endocytic pathways implicated in CMV maturation and envelopment is lacking. We show here that dynamin, which is an integral part of host endocytic machinery, is largely dispensable for early stages of CMV infection but is required at a late stage of CMV maturation. Studies on dynamin function in CMV infection will help us understand the host-virus interaction pathways amenable to targeting by conventional small molecules, as well as by newer generation nucleotide-based therapeutics (e.g., small interfering RNA, CRISPR/CAS gRNA, etc.).


Assuntos
Citomegalovirus/fisiologia , Dinaminas/genética , Fibroblastos/virologia , Proteínas Virais/metabolismo , Animais , Proteínas de Transporte/metabolismo , Sobrevivência Celular , Células Cultivadas , Dinaminas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação Viral da Expressão Gênica , Técnicas de Inativação de Genes , Glicoproteínas/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Camundongos , Proteínas do Envelope Viral/metabolismo , Carga Viral , Internalização do Vírus
5.
J Org Chem ; 84(11): 6992-7006, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31066280

RESUMO

The association between glioblastoma (GBM) and human cytomegalovirus (HCMV) infection has been the intensely debated topic over the decades for developing new therapeutic options. In this regard, the peroxides from natural and synthetic sources served as potential antiviral and anticancer agents in the past. Herein, a concise and efficient strategy has been demonstrated to access a novel class of peroxides containing a spiro-isoxazoline to primarily investigate the biological activities. The synthetic compounds were evaluated for in vitro antiviral and antiproliferative activity against HCMV and glioblastoma cell line (GBM6), respectively. While compound 13m showed moderate anti-CMV activity (IC50 = 19 µM), surprisingly, an independent biological assay for compound 13m revealed its antiproliferative activity against the human glioblastoma cell line (GBM6) with an IC50 of 10 µM. Hence, the unification of an isoxazoline and peroxide heterocycles could be a potential direction to initiate the HCMV-GBM drug discovery program.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Citomegalovirus/efeitos dos fármacos , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/patologia , Humanos , Isoxazóis/química , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peróxidos/química , Peróxidos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Células Tumorais Cultivadas
6.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669268

RESUMO

Cantilever electrostatically-actuated resonators show great promise in sensing and actuating applications. However, the electrostatic actuation suffers from high-voltage actuation requirements and high noise low-amplitude signal-outputs which limit its applications. Here, we introduce a mixed-frequency signal for a cantilever-based resonator that triggers its mechanical and electrical resonances simultaneously, to overcome these limitations. A single linear RLC circuit cannot completely capture the response of the resonator under double resonance excitation. Therefore, we develop a coupled mechanical and electrical mathematical linearized model at different operation frequencies and validate this model experimentally. The double-resonance excitation results in a 21 times amplification of the voltage across the resonator and 31 times amplitude amplification over classical excitation schemes. This intensive experimental study showed a great potential of double resonance excitation providing a high amplitude amplification and maintaining the linearity of the system when the parasitic capacitance is maintained low.

7.
Cell Death Discov ; 9(1): 111, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012234

RESUMO

Cytomegalovirus (CMV) is a widely prevalent herpesvirus that reaches seroprevalence rates of up to 95% in several parts of the world. The majority of CMV infections are asymptomatic, albeit they have severe detrimental effects on immunocompromised individuals. Congenital CMV infection is a leading cause of developmental abnormalities in the USA. CMV infection is a significant risk factor for cardiovascular diseases in individuals of all ages. Like other herpesviruses, CMV regulates cell death for its replication and establishes and maintains a latent state in the host. Although CMV-mediated regulation of cell death is reported by several groups, it is unknown how CMV infection affects necroptosis and apoptosis in cardiac cells. Here, we infected primary cardiomyocytes, the contractile cells in the heart, and primary cardiac fibroblasts with wild-type and cell-death suppressor deficient mutant CMVs to determine how CMV regulates necroptosis and apoptosis in cardiac cells. Our results reveal that CMV infection prevents TNF-induced necroptosis in cardiomyocytes; however, the opposite phenotype is observed in cardiac fibroblasts. CMV infection also suppresses inflammation, reactive oxygen species (ROS) generation, and apoptosis in cardiomyocytes. Furthermore, CMV infection improves mitochondrial biogenesis and viability in cardiomyocytes. We conclude that CMV infection differentially affects the viability of cardiac cells.

8.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076957

RESUMO

Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-ß signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.

9.
Curr Opin Immunol ; 74: 68-75, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794039

RESUMO

Tissue resident memory T cells (TRM) are enriched in non-lymphoid tissues and represent a formidable barrier against invading pathogens and tumors. TRM are armed with deployment ready effector molecules which combined with their frontline location allows them to be early organizing centers of our immune defense. Despite their autonomous nature, TRM rely on careful collaboration with other immune and non-immune cells located within the barrier organ to exert their superior protective role. Here, we highlight recent studies focusing on cellular interactions that regulate TRM establishment and function. A deeper understanding of these processes is instrumental in designing new means to target TRM for desirable outcomes in infectious diseases, cancers and autoimmunity.


Assuntos
Células T de Memória , Neoplasias , Autoimunidade , Linfócitos T CD8-Positivos , Comunicação Celular , Humanos , Memória Imunológica , Neoplasias/patologia
10.
Front Digit Health ; 3: 731076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713201

RESUMO

This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN.

11.
Viruses ; 13(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835083

RESUMO

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 µM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150-capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Proteínas da Matriz Viral/metabolismo , Proteínas da Matriz Viral/fisiologia , Animais , Capsídeo , Proteínas do Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/metabolismo , Humanos , Camundongos , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidade , Fosfoproteínas/ultraestrutura , Proteínas da Matriz Viral/ultraestrutura , Vírion , Montagem de Vírus
12.
Sci Rep ; 8(1): 286, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321505

RESUMO

The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 µmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.


Assuntos
Técnicas Biossensoriais , Ácido Cítrico/análise , Ácido Cítrico/química , Colorimetria , Água/análise , Água/química , Ânions , Colorimetria/métodos , Amarelo de Eosina-(YS)/análise , Amarelo de Eosina-(YS)/química , Amarelo de Eosina-(YS)/toxicidade , Fibroblastos , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Espectrometria de Fluorescência
13.
Sci Rep ; 7: 46069, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406138

RESUMO

Endocytic processes are critical for cellular entry of several viruses; however, the role of endocytosis in cellular trafficking of viruses beyond virus entry is only partially understood. Here, we utilized two laboratory strains (AD169 and Towne) of human cytomegalovirus (HCMV), which are known to use cell membrane fusion rather than endocytosis to enter fibroblasts, in order to study a post-entry role of endocytosis in HCMV life cycle. Upon pharmacological inhibition of dynamin-2 or clathrin terminal domain (TD) ligand association, these strains entered the cells successfully based on the expression of immediate early viral protein. However, both the inhibitors significantly reduced the growth rates and final virus yields of viruses without inhibiting the expression of early to late viral proteins. Clathrin accumulated in the cytoplasmic virus assembly compartment (vAC) of infected cells co-localizing with virus tegument protein pp150 and the formation of vAC was compromised upon endocytic inhibition. Transmission electron micrographs (TEM) of infected cells treated with endocytosis inhibitors showed intact nuclear stages of nucleocapsid assembly but the cytoplasmic virus maturation was greatly compromised. Thus, the data presented here implicate endocytic pathways in HCMV maturation and egress.


Assuntos
Citomegalovirus/fisiologia , Endocitose , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Clatrina/metabolismo , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/crescimento & desenvolvimento , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Fibroblastos/virologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrazonas/farmacologia , Sulfonamidas/farmacologia , Tiazolidinas/farmacologia , Proteínas Virais/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
ACS Omega ; 2(12): 9057-9066, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023599

RESUMO

A thiourea-based tripodal receptor L substituted with 3-nitrophenyl groups has been synthesized, and the binding affinity for a variety of anions has been studied by 1H NMR titrations and nuclear Overhauser enhancement spectroscopy experiments in dimethyl sulfoxide-d6. As investigated by 1H NMR titrations, the receptor binds an anion in a 1:1 binding mode, showing the highest binding and strong selectivity for sulfate anion. A competitive colorimetric assay in the presence of fluoride suggests that the sulfate is capable of displacing the bound fluoride, showing a sharp visible color change. The strong affinity of L for sulfate was further supported by UV-vis titrations and density functional theory (DFT) calculations. Time-dependent DFT calculations indicate that the fluoride complex possesses a different optical absorption spectrum (due to charge transfer between the fluoride and the surrounding ligand) than the sulfate complex, reflecting the observed colorimetric change in these two complexes. The receptor was further tested for its biocompatibility on primary human foreskin fibroblasts and HeLa cells, exhibiting an excellent cell viability up to 100 µM concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA