RESUMO
The human CD8+ T cell clone 6C5 has previously been shown to recognize the tert-butyl-modified Bax161-170 peptide LLSY(3-tBu)FGTPT presented by HLA-A*02:01. This nonnatural epitope was likely created as a by-product of fluorenylmethoxycarbonyl protecting group peptide synthesis and bound poorly to HLA-A*02:01. In this study, we used a systematic approach to identify and characterize natural ligands for the 6C5 TCR. Functional analyses revealed that 6C5 T cells only recognized the LLSYFGTPT peptide when tBu was added to the tyrosine residue and did not recognize the LLSYFGTPT peptide modified with larger (di-tBu) or smaller chemical groups (Me). Combinatorial peptide library screening further showed that 6C5 T cells recognized a series of self-derived peptides with dissimilar amino acid sequences to LLSY(3-tBu)FGTPT. Structural studies of LLSY(3-tBu)FGTPT and two other activating nonamers (IIGWMWIPV and LLGWVFAQV) in complex with HLA-A*02:01 demonstrated similar overall peptide conformations and highlighted the importance of the position (P) 4 residue for T cell recognition, particularly the capacity of the bulky amino acid tryptophan to substitute for the tBu-modified tyrosine residue in conjunction with other changes at P5 and P6. Collectively, these results indicated that chemical modifications directly altered the immunogenicity of a synthetic peptide via molecular mimicry, leading to the inadvertent activation of a T cell clone with unexpected and potentially autoreactive specificities.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Fragmentos de Peptídeos/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno/imunologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Humanos , Ligantes , Biblioteca de PeptídeosRESUMO
When dealing with T lymphocyte culture there is currently very less information available about the interaction between T-cells and the culture system. In this study we look at the influence of the culture chamber on T-cell proliferation in two main aspects of the culture system, namely: culture chamber material and geometry. The study was carried out using unique polymeric closed cell culture inserts, which were processed via injection moulding from polystyrene (PS), polycarbonate (PC), polyetherurethane (PEU), polystyrene-co-acrylonitrile (PSAN) and polyetherimide (PEI). Furthermore culture chamber geometry was studied using commercially available 24, 12 and 6-well plates prepared from tissue culture plastic (TCP). For T lymphocyte stimulation two methods were used involving either EBV peptide pools or MACS iBead particles depending on the experiment performed. Culture was done with 1645 RPMI medium supplemented with foetal calf serum, penicillin, streptomycin and rhIL-2. We found four materials out of five we tested (PS, PC, PSAN and PEI) exhibited similar fold expansions with minimal influence on proportions of CD4 and CD8, while PEU had a negative influence on T cell growth along with adversely affected CD4/CD8 proportions. Changes in the geometry of TCP had no effect on T cell growth or maturation rather the size of geometry seems to have more influence on proliferation. T-cells appear to prefer smaller geometries during initial stages of culture while towards the end of the culture size becomes less significant to cell proliferation. The parameters tested in this study have significant influences on T-cell growth and are necessary to consider when designing and constructing expansion systems for antigen specific T lymphocytes. This is important when culturing T-cells for immunotherapeutic applications where antigen specificity, T-cell maturation and function should remain unaffected during culture.