Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(10): 4658-4675, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36286033

RESUMO

Lead (Pb) contamination is a widespread environmental problem due to its toxicity to living organisms. Hirschfeldia incana L., a member of the Brassicaceae family, commonly found in the Mediterranean regions, is characterized by its ability to tolerate and accumulate Pb in soils and hydroponic cultures. This plant has been reported as an excellent model to assess the response of plants to Pb. However, the lack of genomic data for H. incana hinders research at the molecular level. In the present study, we carried out RNA deep transcriptome sequencing (RNA-seq) of H. incana under two conditions, control without Pb(NO3)2 and treatment with 100 µM of Pb(NO3)2 for 15 days. A total of 797.83 million reads were generated using Illumina sequencing technology. We assembled 77,491 transcript sequences with an average length of 959 bp and N50 of 1330 bp. Sequence similarity analyses and annotation of these transcripts were performed against the Arabidopsis thaliana nr protein database, Gene Ontology (GO), and KEGG databases. As a result, 13,046 GO terms and 138 KEGG maps were created. Under Pb stress, 577 and 270 genes were differentially expressed in roots and aboveground parts, respectively. Detailed elucidation of regulation of metal transporters, transcription factors (TFs), and plant hormone genes described the role of actors that allow the plant to fine-tune Pb stress responses. Our study revealed that several genes related to jasmonic acid biosynthesis and alpha-linoleic acid were upregulated, suggesting these components' implication in Hirschfeldia incana L responses to Pb stress. This study provides data for further genomic analyses of the biological and molecular mechanisms leading to Pb tolerance and accumulation in Hirschfeldia incana L.

2.
PLoS One ; 19(6): e0305053, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38924033

RESUMO

This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.


Assuntos
Biodegradação Ambiental , Chumbo , Mineração , Plantas , Poluentes do Solo , Zinco , Marrocos , Zinco/análise , Zinco/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Chumbo/metabolismo , Chumbo/análise , Plantas/metabolismo , Plantas/química , Monitoramento Ambiental/métodos , Monitoramento Biológico/métodos , Solo/química
3.
Plants (Basel) ; 9(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137928

RESUMO

Screening of native plant species from mining sites can lead to identify suitable plants for phytoremediation approaches. In this study, we assayed heavy metals tolerance and accumulation in native and dominant plants growing on abandoned Pb/Zn mining site in eastern Morocco. Soil samples and native plants were collected and analyzed for As, Cd, Cu, Ni, Sb, Pb, and Zn concentrations. Bioconcentration factor (BCF), translocation factor (TF), and biological accumulation coefficient (BAC) were determined for each element. Our results showed that soils present low organic matter content combined with high levels of heavy metals especially Pb and Zn due to past extraction activities. Native and dominant plants sampled in these areas were classified into 14 species and eight families. Principal components analysis separated Artemisia herba-alba with high concentrations of As, Cd, Cu, Ni, and Pb in shoots from other species. Four plant species, namely, Reseda alba, Cistus libanotis, Stipa tenacissima, and Artemisia herba-alba showed strong capacity to tolerate and hyperaccumulate heavy metals, especially Pb, in their tissues. According to BCF, TF, and BAC, these plant species could be used as effective plants for Pb phytoextraction. Stipa tenacissima and Artemisia herba-alba are better suited for phytostabilization of Cd/Cu and Cu/Zn, respectively. Our study shows that several spontaneous and native plants growing on Pb/Zn contaminated sites have a good potential for developing heavy metals phytoremediation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA