Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(39): e2311921, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38647340

RESUMO

Neural tracing proteins like horseradish peroxidase-conjugated wheat germ agglutinin (WGA-HRP) can target the central nervous system (CNS) through anatomic retrograde transport without crossing the blood-brain barrier (BBB). Conjugating WGA-HRP to nanoparticles may enable the creation of BBB-bypassing nanomedicine. Microfluidics and two-photon confocal microscopy is applied to screen nanocarriers for transport efficacy and gain mechanistic insights into their interactions with neurons. Protein modification of gold nanoparticles alters their cellular uptake at the axonal terminal and activates fast retrograde transport. Trajectory analysis of individual endosomes carrying the nanoparticles reveals a run-and-pause pattern along the axon with endosomes carrying WGA-HRP-conjugated gold nanoparticles exhibiting longer run duration and faster instantaneous velocity than those carrying nonconjugated nanoparticles. The results offer a mechanistic explanation of the different axonal transport dynamics as well as a cell-based functional assay of neuron-targeted nanoparticles with the goal of developing BBB-bypassing nanomedicine for the treatment of nervous system disorders.


Assuntos
Transporte Axonal , Ouro , Neurônios , Transporte Axonal/fisiologia , Neurônios/metabolismo , Animais , Ouro/química , Aglutininas do Germe de Trigo/metabolismo , Aglutininas do Germe de Trigo/química , Nanopartículas Metálicas/química , Nanopartículas/química , Axônios/metabolismo , Ratos
2.
Langmuir ; 39(9): 3235-3245, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36825490

RESUMO

This article describes a new approach in targeted drug delivery to the central nervous system (CNS) in a significant departure from the predominant systematic drug administration attempting to penetrate the blood-brain barrier (BBB). Nanoparticles chemically conjugated to neural tract tracer proteins are capable of path-specific axonal retrograde transport, transneuronal transport, and anatomical tract flow to bypass the BBB. To celebrate the work by Dr. Bettye Washington Greene on the physical chemistry of colloidal particles, this article focuses on the physiochemical characteristics of the nanoparticles, various colloidal forces that impact the colloidal stability of nanoparticles in biological media, and surface chemistry strategies to avoid nanoparticle aggregation-induced poor therapeutic outcomes. The biological environment for the anatomical retrograde transport of neural tract tracers is examined to directly link factors impacting the colloidal stability of the new class of CNS-targeting nanoconjugates such as nanoconjugate size, shape, surface charge, surface chemistry, ionic strength, pH, and protein adsorption on the nanoparticle. We conclude with opportunities and challenges for future research.


Assuntos
Encéfalo , Nanopartículas , Encéfalo/metabolismo , Sistema Nervoso Central , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Nanoconjugados , Transporte Biológico
3.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563014

RESUMO

There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure-activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Ácido Cólico/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298964

RESUMO

The rapid emergence of drug-resistant bacteria is a major global health concern. Antimicrobial peptides (AMPs) and peptidomimetics have arisen as a new class of antibacterial agents in recent years in an attempt to overcome antibiotic resistance. A library of phenylglyoxamide-based small molecular peptidomimetics was synthesised by incorporating an N-alkylsulfonyl hydrophobic group with varying alkyl chain lengths and a hydrophilic cationic group into a glyoxamide core appended to phenyl ring systems. The quaternary ammonium iodide salts 16d and 17c showed excellent minimum inhibitory concentration (MIC) of 4 and 8 µM (2.9 and 5.6 µg/mL) against Staphylococcus aureus, respectively, while the guanidinium hydrochloride salt 34a showed an MIC of 16 µM (8.5 µg/mL) against Escherichia coli. Additionally, the quaternary ammonium iodide salt 17c inhibited 70% S. aureus biofilm formation at 16 µM. It also disrupted 44% of pre-established S. aureus biofilms at 32 µM and 28% of pre-established E. coli biofilms 64 µM, respectively. A cytoplasmic membrane permeability study indicated that the synthesised peptidomimetics acted via disruption and depolarisation of membranes. Moreover, the quaternary ammonium iodide salts 16d and 17c were non-toxic against human cells at their therapeutic dosages against S. aureus.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Escherichia coli/fisiologia , Peptidomiméticos , Staphylococcus aureus/fisiologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Peptidomiméticos/síntese química , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Relação Estrutura-Atividade , Compostos de Sulfonilureia/síntese química , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia
5.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947921

RESUMO

There has been an increasing interest in the development of antimicrobial peptides (AMPs) and their synthetic mimics as a novel class of antibiotics to overcome the rapid emergence of antibiotic resistance. Recently, phenylglyoxamide-based small molecular AMP mimics have been identified as potential leads to treat bacterial infections. In this study, a new series of biphenylglyoxamide-based small molecular AMP mimics were synthesised from the ring-opening reaction of N-sulfonylisatin bearing a biphenyl backbone with a diamine, followed by the conversion into tertiary ammonium chloride, quaternary ammonium iodide and guanidinium hydrochloride salts. Structure-activity relationship studies of the analogues identified the octanesulfonyl group as being essential for both Gram-positive and Gram-negative antibacterial activity, while the biphenyl backbone was important for Gram-negative antibacterial activity. The most potent analogue was identified to be chloro-substituted quaternary ammonium iodide salt 15c, which possesses antibacterial activity against both Gram-positive (MIC against Staphylococcus aureus = 8 µM) and Gram-negative bacteria (MIC against Escherichia coli = 16 µM, Pseudomonas aeruginosa = 63 µM) and disrupted 35% of pre-established S. aureus biofilms at 32 µM. Cytoplasmic membrane permeability and tethered bilayer lipid membranes (tBLMs) studies suggested that 15c acts as a bacterial membrane disruptor. In addition, in vitro toxicity studies showed that the potent compounds are non-toxic against human cells at therapeutic dosages.


Assuntos
Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptidomiméticos/síntese química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Biofilmes/efeitos dos fármacos , Compostos de Bifenilo/química , Linhagem Celular , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
6.
Pharmaceutics ; 15(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37514072

RESUMO

Paclitaxel (PTX) and 5-fluorouracil (5-FU) are clinically relevant chemotherapeutics, but both suffer a range of biopharmaceutical challenges (e.g., either low solubility or permeability and limited controlled release from nanocarriers), which reduces their effectiveness in new medicines. Anticancer drugs have several major limitations, which include non-specificity, wide biological distribution, a short half-life, and systemic toxicity. Here, we investigate the potential of liposome-micelle-hybrid (LMH) carriers (i.e., drug-loaded micelles encapsulated within drug-loaded liposomes) to enhance the co-formulation and delivery of PTX and 5-FU, facilitating new delivery opportunities with enhanced chemotherapeutic performance. We focus on the combination of liposomes and micelles for co-delivery of PTX and 5_FU to investigate increased drug loading, improved solubility, and transport/permeability to enhance chemotherapeutic potential. Furthermore, combination chemotherapy (i.e., containing two or more drugs in a single formulation) may offer improved pharmacological performance. Compared with individual liposome and micelle formulations, the optimized PTX-5FU-LMH carriers demonstrated increased drug loading and solubility, temperature-sensitive release, enhanced permeability in a Caco-2 cell monolayer model, and cancer cell eradication. LMH has significant potential for cancer drug delivery and as a next-generation chemotherapeutic.

7.
J Appl Physiol (1985) ; 133(2): 262-272, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771225

RESUMO

Effects of the Adenosine A1 blockade using 8-cyclopentyl-1,3-diprophyxanthine (DPCPX) nanoconjugate on inducing recovery of the hemidiaphragm paralyzed by hemisection have been thoroughly examined previously; however, the toxicology of DPCPX nanoconjugate remains unknown. This research study investigates the therapeutic efficacy and toxicology of the nanoconjugate DPCPX in the cervical spinal cord injury (SCI) rat model. We hypothesized that a single injection of nanoconjugate DPCPX in the paralyzed left hemidiaphragm (LDH) of hemisected rats at the 2nd cervical segment (C2Hx) would lead to the long-term recovery of LDH while showing minimal toxicity. Adult male rats underwent left C2Hx surgery and the diaphragms' baseline electromyography (EMG). Subsequently, rats were randomized into a control group and four treated subgroups. Three subgroups received a single intradiaphragmatic dose of either 0.09, 0.15, or 0.27 µg/kg, and one subgroup received 0.1 mg/kg of native DPCPX two times per day intravenously (i.v.) for 3 days (total 0.6 mg/kg). Rats were monitored for a total of 56 days. Compared with control, the treatment with nanoconjugate DPCPX at 0.09 µg/kg, 0.15 µg/kg, and 0.27 µg/kg doses elicited significant recovery of paralyzed LDH (i.e., 67% recovery at 8 wk) (P < 0.05). DPCPX nanoconjugate-treated rats had significant weight loss for first 2 wk but recovered significantly by day 56 (P < 0.05). The levels of gold in the blood and body tissues were below the recommended levels. No sign of weakness, histology of tissue damage, or organ abnormality was observed. A dose of DPCPX nanoconjugate can induce long-term diaphragm recovery after SCI without observed toxicity.NEW & NOTEWORTHY The intradiaphragmatic administration of nanoconjugate is safe and has the promise to significantly reduce the therapeutic dosage for the treatment and achieve long-term and possibly permanent recovery in respiratory muscle dysfunction after SCI. No toxicity of nanoconjugate was found in any of the experimental animals.


Assuntos
Nanoconjugados , Traumatismos da Medula Espinal , Xantinas , Animais , Diafragma , Masculino , Nanoconjugados/uso terapêutico , Nanoconjugados/toxicidade , Ratos , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/tratamento farmacológico , Xantinas/uso terapêutico , Xantinas/toxicidade
8.
Nanoscale ; 14(39): 14760-14769, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36178260

RESUMO

The development of functional nanocoatings using natural compounds is a hallmark of sustainable strategies in the field of green synthesis. Herein, we report a surface-independent nanocoating strategy using natural polyphenols and gallium-based room temperature liquid metal nanoparticles. The nanocoating matrix is composed of tannic acid, crosslinked with group (IV) transition metal ions. Liquid gallium nanoparticles are incorporated into the coatings as a gallium ion releasing depot. The coating deposition is rapid and can be applied to a range of substrates including glass, plastics, paper, and metal surfaces, owing to the versatile adhesive nature of the catechol/gallol functional groups of tannic acid. The coating thickness can be controlled from 100 to 700 nm and the content of liquid gallium nanoparticles can be modulated. This enables the tunable release behaviour of gallium ions into the surrounding from the composite coatings. The coatings are highly biocompatible and display antioxidant and antibacterial properties that can be useful for diverse applications.

9.
ACS Chem Neurosci ; 12(23): 4438-4448, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672533

RESUMO

Respiratory dysfunction is a major cause of death in people with spinal cord injury (SCI). A remaining unsolved problem in treating SCI is the intolerable side effects of the drugs to patients. In a significant departure from conventional targeted nanotherapeutics to overcome the blood-brain barrier (BBB), this work pursues a drug-delivery approach that uses neural tracing retrograde transport proteins to bypass the BBB and deliver an adenosine A1 receptor antagonist drug, 1,3-dipropyl-8-cyclopentyl xanthine, exclusively to the respiratory motoneurons in the spinal cord and the brainstem. A single intradiaphragmatic injection at one thousandth of the native drug dosage induces prolonged respiratory recovery in a hemisection animal model. To translate the discovery into new treatments for respiratory dysfunction, we carry out this study to characterize the purity and quality of synthesis, stability, and drug-release properties of the neural tracing protein (wheat germ agglutinin chemically conjugated to horseradish peroxidase)-coupled nanoconjugate. We show that the batch-to-batch particle size and drug dosage variations are less than 10%. We evaluate the nanoconjugate size against the spatial constraints imposed by transsynaptic transport from pre to postsynaptic neurons. We determine that the nanoconjugate formulation is capable of sustained drug release lasting for days at physiologic pH, a prerequisite for long-distance transport of the drug from the diaphragm muscle to the brainstem. We model the drug-release profiles using a first-order reaction model and the Noyes-Whitney diffusion model. We confirm via biological electron microscopy that the nanoconjugate particles do not accumulate in the tissues at the injection site. We define the nanoconjugate storage conditions after monitoring the solution dispersion stability under various conditions for 4 months. This study supports further development of neural tracing protein-enabled nanotherapeutics for treating respiratory problems associated with SCI.


Assuntos
Preparações Farmacêuticas , Traumatismos da Medula Espinal , Animais , Liberação Controlada de Fármacos , Humanos , Neurônios Motores , Nanoconjugados , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico
10.
Eur J Pharm Biopharm ; 154: 338-347, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32739535

RESUMO

A novel liposome-micelle-hybrid (LMH) carrier system was developed as a superior oral drug delivery platform compared to conventional liposome or micelle formulations. The optimal LMH system was engineered by encapsulating TPGS micelles in the aqueous core of liposomes and its efficacy for oral delivery was demonstrated using lovastatin (LOV) as a model poorly soluble drug with P-gp (permeability glycoprotein) limited intestinal absorption. LOV-LMH was characterised as unilamellar, spherical vesicles encapsulating micellar structures within the interior aqueous core and showing an average diameter below 200 nm. LMH demonstrated enhanced drug loading, water apparent solubility and extended/controlled release of LOV compared to conventional liposomes and micelles. LMH exhibited enhanced LOV absorption and transportation in a Caco-2 cell monolayer model of the intestine by inhibiting the P-gp transporter system compared to free LOV. The LMH system is a promising novel oral delivery approach for enhancing bioavailability of poorly water-soluble drugs, especially those presenting P-gp effluxes limited absorption.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Absorção Intestinal/fisiologia , Lovastatina/administração & dosagem , Lovastatina/metabolismo , Micelas , Água/metabolismo , Administração Oral , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Absorção Intestinal/efeitos dos fármacos , Lipossomos , Solubilidade/efeitos dos fármacos
11.
J Mater Chem B ; 3(48): 9269-9276, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262926

RESUMO

A small peptide-based gelator forms stable hydrogels in an aqueous mixture with a range of poly(ethylene glycol) PEGs, from the ethylene glycol monomer to PEG 20 000 with stronger gels forming in polymeric PEG. Spectroscopic studies on these systems reveal significant secondary structural changes when compared to gels formed from pure water. The use of PEG also facilitates the incorporation and controlled release of poorly water-soluble anti-cancer drugs such as Temozolomide and Paclitaxel (Taxol®). This work provides a powerful insight into the role of macromolecular crowding and hydrophobic interactions in not only hydrogels formed from small molecules but potentially also biological gel-like materials such as the cytosol and the extracellular matrix (ECM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA