RESUMO
Potentially toxic dyes are introduced mainly to rivers through industrial effluents which have a high risk to human health and aquatic life. Activated carbon (AC) from the stem of Salvadora persica was synthesised to take off toxic industrial dyes from an aqueous solution. KOH was used as the activating agent throughout the preparation process for the AC. The morphology and composition of the prepared AC were studied by various analytical methods. From the overall results, it was found that the prepared AC is highly porous and thermal stability gained around 800 â. At room temperature, remediation of the dyes (cationic dye, methyl red and anionic dye, methylene blue) using the adsorption method was carried out to ascertain the impact of time and the quantity of AC on methylene blue (MB) and methyl red (MR) removal. During the initial 60 min, equilibrium was attained for the optimum dye concentration (200 mg/L). The data for adsorption on the AC obtained at equilibrium were examined by the Langmuir and Freundlich isotherm models. Both the isotherms accurately predicted the data, with regression values of 0.99 for MR and 0.90 for MB, respectively. The equilibrium adsorption data was also analysed by kinetic models. The adsorption data well fitted in 2nd order kinetic model. The results of MB and MR adsorption from solutions have demonstrated that the stem of Salvadora persica is one of the cheap and more eco-friendly options for remediation of toxic dyes from aqueous solutions.
Assuntos
Carvão Vegetal , Corantes , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Carvão Vegetal/química , Adsorção , Azul de Metileno/química , Salvadoraceae/química , Cinética , Caules de Planta/química , Eliminação de Resíduos Líquidos/métodos , Compostos AzoRESUMO
Typhoid fever is transmitted by ingestion of polluted water, contaminated food, and stool of typhoid-infected individuals, mostly in developing countries with poor hygienic environments. To find novel therapeutic targets and inhibitors, We employed a subtractive genomics strategy towards Salmonella Typhi and the complete genomes of eight strains were primarily subjected to the EDGAR tool to predict the core genome (n = 3207). Human non-homology (n = 2450) was followed by essential genes identification (n = 37). The STRING database predicted maximum protein-protein interactions, followed by cellular localization. The virulent/immunogenic ability of predicted genes were checked to differentiate drug and vaccine targets. Furthermore, the 3D models of the identified putative proteins encoded by the respective genes were constructed and subjected to druggability analyses where only "highly druggable" proteins were selected for molecular docking and simulation analyses. The putative targets ATP-dependent CLP protease proteolytic subunit, Imidazole glycerol phosphate synthase hisH, 7,8-dihydropteroate synthase folP and 2,3-bisphosphoglycerate-independent phosphoglycerate mutase gpmI were screened against a drug-like library (n = 12,000) and top hits were selected based on H-bonds, RMSD and energy scores. Finally, the ADMET properties for novel inhibitors ZINC19340748, ZINC09319798, ZINC00494142, ZINC32918650 were optimized followed by binding free energy (MM/PBSA) calculation for ligand-receptor complexes. The findings of this work are expected to aid in expediting the identification of novel protein targets and inhibitors in combating typhoid Salmonellosis, in addition to the already existing therapies.
Assuntos
Antibacterianos , Salmonella typhi , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidase Clp , Genômica , Simulação de Acoplamento Molecular , Salmonella typhi/efeitos dos fármacos , Salmonella typhi/genética , Febre TifoideRESUMO
Burkholderia cepacia complex (BCC) is a group of gram-negative bacteria composed of at least 20 different species that cause diseases in plants, animals as well as humans (cystic fibrosis and airway infection). Here, we analyzed the proteomic data of 47 BCC strains by classifying them in three groups. Phylogenetic analyses were performed followed by individual core region identification for each group. Comparative analysis of the three individual core protein fractions resulted in 1766 ortholog/proteins. Non-human homologous proteins from the core region gave 1680 proteins. Essential protein analyses reduced the target list to 37 proteins, which were further compared to a closely related out-group, Burkholderia gladioli ATCC 10,248 strain, resulting in 21 proteins. 3D structure modeling, validation, and druggability step gave six targets that were subjected to further target prioritization parameters which ultimately resulted in two BCC targets. A library of 12,000 ZINC drug-like compounds was screened, where only the top hits were selected for docking orientations. These included ZINC01405842 (against Chorismate synthase aroC) and ZINC06055530 (against Bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/Glucosamine-1-phosphate acetyltransferase glmU). Finally, dynamics simulation (200 ns) was performed for each ligand-receptor complex, followed by ADMET profiling. Of these targets, details of their applicability as drug targets have not yet been elucidated experimentally, hence making our predictions novel and it is suggested that further wet-lab experimentations should be conducted to test the identified BCC targets and ZINC scaffolds to inhibit them.
Assuntos
Complexo Burkholderia cepacia , Animais , Complexo Burkholderia cepacia/genética , Filogenia , Proteômica , Análise de Sequência , ZincoRESUMO
BACKGROUND: Studies have detected mis-assemblies in genomes of the species Corynebacterium pseudotuberculosis. These new discover have been possible due to the evolution of the Next-Generation Sequencing platforms, which have provided sequencing with accuracy and reduced costs. In addition, the improving of techniques for construction of high accuracy genomic maps, for example, Whole-genome mapping (WGM) (OpGen Inc), have allow high-resolution assembly that can detect large rearrangements. RESULTS: In this work, we present the resequencing of Corynebacterium pseudotuberculosis strain 1002 (Cp1002). Cp1002 was the first strain of this species sequenced in Brazil, and its genome has been used as model for several studies in silico of caseous lymphadenitis disease. The sequencing was performed using the platform Ion PGM and fragment library (200 bp kit). A restriction map was constructed, using the technique of WGM with the enzyme KpnI. After the new assembly process, using WGM as scaffolder, we detected a large inversion with size bigger than one-half of genome. A specific analysis using BLAST and NR database shows that the inversion occurs between two homology RNA ribosomal regions. CONCLUSION: In conclusion, the results showed by WGM could be used to detect mismatches in assemblies, providing genomic maps with high resolution and allow assemblies with more accuracy and completeness. The new assembly of C. pseudotuberculosis was deposited in GenBank under the accession no. CP012837.
Assuntos
Mapeamento Cromossômico/métodos , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Genômica/métodos , Óperon de RNAr/genética , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNARESUMO
BACKGROUND: Organisms utilize a multitude of mechanisms for responding to changing environmental conditions, maintaining their functional homeostasis and to overcome stress situations. One of the most important mechanisms is transcriptional gene regulation. In-depth study of the transcriptional gene regulatory network can lead to various practical applications, creating a greater understanding of how organisms control their cellular behavior. DESCRIPTION: In this work, we present a new database, CMRegNet for the gene regulatory networks of Corynebacterium glutamicum ATCC 13032 and Mycobacterium tuberculosis H37Rv. We furthermore transferred the known networks of these model organisms to 18 other non-model but phylogenetically close species (target organisms) of the CMNR group. In comparison to other network transfers, for the first time we utilized two model organisms resulting into a more diverse and complete network of the target organisms. CONCLUSION: CMRegNet provides easy access to a total of 3,103 known regulations in C. glutamicum ATCC 13032 and M. tuberculosis H37Rv and to 38,940 evolutionary conserved interactions for 18 non-model species of the CMNR group. This makes CMRegNet to date the most comprehensive database of regulatory interactions of CMNR bacteria. The content of CMRegNet is publicly available online via a web interface found at http://lgcm.icb.ufmg.br/cmregnet .
Assuntos
Corynebacterium glutamicum/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Mycobacterium tuberculosis/genética , Biologia Computacional , Corynebacterium glutamicum/classificação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Internet , Mycobacterium tuberculosis/classificação , FilogeniaRESUMO
Corynebacterium pseudotuberculosis (Cp) is a pathogenic bacterium that causes caseous lymphadenitis (CLA), ulcerative lymphangitis, mastitis, and edematous to a broad spectrum of hosts, including ruminants, thereby threatening economic and dairy industries worldwide. Currently there is no effective drug or vaccine available against Cp. To identify new targets, we adopted a novel integrative strategy, which began with the prediction of the modelome (tridimensional protein structures for the proteome of an organism, generated through comparative modeling) for 15 previously sequenced C. pseudotuberculosis strains. This pan-modelomics approach identified a set of 331 conserved proteins having 95-100% intra-species sequence similarity. Next, we combined subtractive proteomics and modelomics to reveal a set of 10 Cp proteins, which may be essential for the bacteria. Of these, 4 proteins (tcsR, mtrA, nrdI, and ispH) were essential and non-host homologs (considering man, horse, cow and sheep as hosts) and satisfied all criteria of being putative targets. Additionally, we subjected these 4 proteins to virtual screening of a drug-like compound library. In all cases, molecules predicted to form favorable interactions and which showed high complementarity to the target were found among the top ranking compounds. The remaining 6 essential proteins (adk, gapA, glyA, fumC, gnd, and aspA) have homologs in the host proteomes. Their active site cavities were compared to the respective cavities in host proteins. We propose that some of these proteins can be selectively targeted using structure-based drug design approaches (SBDD). Our results facilitate the selection of C. pseudotuberculosis putative proteins for developing broad-spectrum novel drugs and vaccines. A few of the targets identified here have been validated in other microorganisms, suggesting that our modelome strategy is effective and can also be applicable to other pathogens.
Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Vacinas Bacterianas , Biologia Computacional , Corynebacterium pseudotuberculosis/efeitos dos fármacos , Corynebacterium pseudotuberculosis/genética , Sistemas de Liberação de Medicamentos , Proteoma/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação por Computador , Sequência Conservada , Corynebacterium pseudotuberculosis/metabolismo , Desenho de Fármacos , Genes Essenciais , Humanos , Software , Relação Estrutura-AtividadeRESUMO
Naegleria fowleri, also known as brain-earing amoeba, causes severe and rapidly fatal CNS infection in humans called primary amebic meningoencephalitis (PAM). The DNA from the N. fowleri clinical isolate was sequenced for circular extrachromosomal ribosomal DNA (CERE - rDNA). The CERE contains 18 S, 5.8 S, and 28 S ribosomal subunits separated by internal transcribed spacers, 5 open reading frames (ORFs), and mostly repeat elements comprising 7268 bp out of 15,786 bp (46%). A wide variety of variations and recombination events were observed. Finally, the ORFs that comprised only 4 hypothetical proteins were modeled and screened against Zinc drug-like compounds. Two compounds [ZINC77564275 (ethyl 2-(((4-isopropyl-4 H-1,2,4-triazol-3-yl) methyl) (methyl)amino) oxazole-4-carboxylate) and ZINC15022129 (5-(2-methoxyphenoxy)-[2,2'-bipyrimidine]-4,6(1 H,5 H)-dione)] were finalized as potential druggable compounds based on ADME toxicity analysis. We propose that the compounds showing the least toxicity would be potential drug candidates after laboratory experimental validation is performed.
Assuntos
DNA Ribossômico , Sequenciamento de Nucleotídeos em Larga Escala , Naegleria fowleri , Naegleria fowleri/genética , Humanos , DNA Ribossômico/genética , Encéfalo/metabolismo , Genótipo , Fases de Leitura AbertaRESUMO
Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.
RESUMO
Campylobacter concisus is a commensal of the human oral flora that has been allied with persistent diarrhea and inflammatory bowel disease (IBD). In children under the age of two, Campylobacter infections are common in the developing countries and have frequently been associated with mortality. They are becoming a prevalent cause of bacterial diarrhea in early adulthood in developed countries as well. The need for identifying new therapeutic targets and drugs is crucial for curbing such infections. Therefore, we identified 18 cytoplasmic potential therapeutic candidates against the type strain of C. concisus and deoxycytidine triphosphate deaminase (dCTP deaminase), involved in pyrimidine synthesis was selected for screening of peptidomimetic inhibitors (n > 30,000 peptidomimetics) against it. To the best of our knowledge, this target has not been studied for Campylobacter spp. Three potent inhibitors of this enzyme were prioritized i.e. peptidomimetic 27, 64, and 150. Dynamics simulation of 100 ns was carried out to validate findings for top-scored inhibitors along with physiology-based pharmacokinetics to estimate behavior in human body and predict dosing parameters. This verification demonstrates a first-in-human pharmacokinetic simulation for these peptidomimetics and can help enhance confidence in these peptide-like structures. Moiety 27 (IUPAC name: 5-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-N-{[2-(2-methoxyethyl)-1-oxo-1H,2H,3H,4H-pyrrolo[1,2-a]pyrazin-3-yl]methyl}furan-2-carboxamide), 64 (IUPAC name: 3-(2-methylpropyl)-1-{3-[5-(5-oxo-1-phenylpyrrolidin-3-yl)-1,2,4-oxadiazol-3-yl]phenyl}urea), and 150 (IUPAC name: N-(3-methoxypropyl)-1-[6-(4-methylphenyl)-4H,6H,7H-[1,2,3]triazolo[4,3-c][1,4]oxazine-3-carbonyl]piperidine-4-carboxamide) were identified as potent inhibitors of C. concisus.Communicated by Ramaswamy H. Sarma.
Assuntos
Infecções por Campylobacter , Campylobacter , Peptidomiméticos , Criança , Humanos , Adulto , Peptidomiméticos/farmacologia , Infecções por Campylobacter/microbiologia , Diarreia/microbiologiaRESUMO
Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 µg), cefixime (5 µg), ceftriaxone (30 µg), nalidixic acid (30 µg), ciprofloxacin (5 µg), and ofloxacin (5 µg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern.
Assuntos
Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Fatores de Virulência/genética , Antibacterianos/farmacologia , Escherichia coli Uropatogênica/genética , Paquistão , Filogenia , Farmacorresistência Bacteriana/genética , Infecções Urinárias/tratamento farmacológico , Proteínas de Membrana Transportadoras , Proteínas de Escherichia coli/genéticaRESUMO
Chrysobacterium indologenes is an emerging MDR pathogen that belongs to the family Flavobacteriaceae. The genome of the C. indologenes, isolated from the nephrotic patient, was sequenced through Illumina MiSeq. The pangenomics of available 56 C. indologenes strains using BPGA revealed an open pangenome (n=5553 CDS), core genome (2141), and accessory genome (2013). The CEG/DEG database identified 662 essential genes that drastically reduced to 68 genes after non-homology analyses towards human and gut microbiome. Further filtering the data for other drug target prioritizing parameters resulted in 32 putative targets. Keeping in view the crucial role played in cell wall biosynthesis, dacB was selected as the final target that encodes D-alanyl-d-alanine carboxypeptidase/endopeptidase (DD-peptidase). The 3D structure of dacB was modelled and rendered to docking analyses against two compound libraries of African plants (n=6842) and Tibetan medicines (n=52). The ADMET profiling exhibited the physicochemical properties of final compounds. The MD simulations showed the stability of inhibitor-DD-peptidase complex and interactions in terms of RMSD, RMSF, binding free energy calculation and H-bonding. We propose that the novel compounds Leptopene and ZINC95486338 from our findings might be potent DD-peptidase inhibitors that could aid in the development of new antibiotic-resistant therapy for the emerging MDR C. indologenes.
Assuntos
Chryseobacterium , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Chryseobacterium/genética , GenômicaRESUMO
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e.g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Assuntos
Bacillales/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Regiões Antárticas , Bacillales/isolamento & purificação , Bacillales/fisiologia , Biofilmes/crescimento & desenvolvimento , Água Doce/microbiologia , Ilhas , Lagos , Dados de Sequência MolecularRESUMO
In this work we report the genome of Corynebacterium pseudotuberculosis strain 267, isolated from a llama. This pathogen is of great veterinary and economic importance, as it is the cause of caseous lymphadenitis in several livestock species around the world and causes significant losses due to the high cost of treatment.
Assuntos
Camelídeos Americanos/microbiologia , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Análise de Sequência de DNA , Animais , Infecções por Corynebacterium/microbiologia , Corynebacterium pseudotuberculosis/isolamento & purificação , Dados de Sequência MolecularRESUMO
Corynebacterium pseudotuberculosis is a pathogen of great veterinary and economic importance, since it affects livestock, mainly sheep and goats, worldwide, together with reports of its presence in camels in several Arabic, Asiatic, and East and West African countries, as well as Australia. In this article, we report the genome sequence of Corynebacterium pseudotuberculosis strain Cp162, collected from the external neck abscess of a camel in the United Kingdom.
Assuntos
Corynebacterium pseudotuberculosis/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Abscesso/microbiologia , Abscesso/veterinária , Animais , Camelus , Infecções por Corynebacterium/microbiologia , Infecções por Corynebacterium/veterinária , Corynebacterium pseudotuberculosis/isolamento & purificação , Dados de Sequência Molecular , Reino UnidoRESUMO
In the current study, we have systematically analysed the mitochondrial DNA (mtDNA) sequence of Naegleria fowleri (N. fowleri) isolate AY27, isolated from Karachi, Pakistan. The N. fowleri isolate AY27 has a circular mtDNA (49,541 bp), which harbours 69 genes (46 protein-coding genes, 21 tRNAs and 2 rRNAs). The pan-genome analysis of N. fowleri species showed a Bpan value of 0.137048, which implies that the pan-genome is open. KEGG classified core, accessory and unique gene clusters for human disease, metabolism, environmental information processing, genetic information processing and organismal system. Similarly, COG characterization of protein showed that core and accessory genes are involved in metabolism, information storages and processing, and cellular processes and signaling. The Naegleria species (n = 6) formed a total of 47 gene clusters; 42 single-copy gene clusters and 5 orthologous gene clusters. It was noted that 100% genes of Naegleria species were present in the orthogroups. We identified 44 single nucleotide polymorphisms (SNP) in the N. fowleri isolate AY27 mtDNA using N. fowleri strain V511 as a reference. Whole mtDNA phylogenetic tree analysis showed that N. fowleri isolates AY27 is closely related to N. fowleri (Accession no. JX174181.1). The ANI (Average Nucleotide Identity) values presented a much clear grouping of the Naegleria species compared to the whole mtDNA based phylogenetic analysis. The current study gives a comprehensive understanding of mtDNA architecture as well as a comparison of Naegleria species (N. fowleri and N. gruberi species) at the mitochondrial genome sequence level.
Assuntos
Genoma Mitocondrial , Naegleria fowleri , Naegleria , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário , Evolução Molecular , Genoma Mitocondrial/genética , Naegleria/genética , Naegleria fowleri/genética , FilogeniaRESUMO
Orientia tsutsugamushi (Ott) is a causative agent of scrub typhus, and one of the emerging pathogens that could affect a large human population. It is one of the misdiagnosed and under-reported, febrile illnesses that infects various body organs (skin, heart, lung, kidney, and brain). The control of this infection is hampered due to the lack of drugs or vaccine against it. This study was undertaken to identify potential drug targets from the core genome of Ott and investigate novel natural product inhibitors against them. Hence, the available genomes for 22 strains of Ott were downloaded from the PATRIC database, and pan-genomic analysis was performed. Only 202 genes were present in the core region. Among these, 94 were identified as essential, 32 non-homologous to humans, nine non-homologous to useful gut flora and a single gene dapD as a drug target. Product of this gene (2,3,4,5-tetrahydropyridine-2-carboxylate N-succinyltransferase) was modeled and docked against traditional Indian (Ayurvedic) and Chinese phytochemical libraries, with best hits selected for docking, based on multiple target-drug/s interactions and minimum energy scores. ADMET profiling and molecular dynamics simulation was performed for top three compounds from each library to assess the toxicity and stability, respectively. We presume that these compounds (ZINC8214635, ZINC32793028, ZINC08101133, ZINC85625167, ZINC06018678, and ZINC13377938) could be successful inhibitors of Ott. However, in-depth experimental and clinical research is needed for further validation.
Assuntos
Produtos Biológicos , Orientia tsutsugamushi , Tifo por Ácaros , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Genômica , Humanos , Orientia tsutsugamushi/genética , Tifo por Ácaros/tratamento farmacológico , Tifo por Ácaros/epidemiologiaRESUMO
We report physicochemical characteristics of various kinds of liquid milk commercially available in Pakistan in comparison with those of fresh natural milk from animals. Milk samples were collected from local markets at Peshawar, Pakistan, and analyzed for their physical features, including moisture, total solids, specific gravity, conductivity, viscosity and titratable acidity (lactic acid equivalent), and chemical components and macro-minerals, including total protein, casein, lactose, ash and minerals (Na, K and Mg). These items were compared with the physicochemical characteristics of the fresh natural milk samples from buffalo, cow and goat. The results were also compared with reported nutritional quality of milk from various countries and World Health Organization (WHO) standards. We found that all the physical features and chemical components of commercially available milk in Pakistan markets meet WHO's requirements, except for Na, K, Ca and Mg, which are below the standards.
Assuntos
Leite/química , Animais , Búfalos , Cálcio/análise , Bovinos , Cabras , Concentração de Íons de Hidrogênio , Metais/análise , Potássio/análise , Sódio/análise , ViscosidadeRESUMO
Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.
Assuntos
Corynebacterium diphtheriae/patogenicidade , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/farmacologia , Simulação por Computador , Corynebacterium diphtheriae/efeitos dos fármacos , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/metabolismo , Genoma Bacteriano , Humanos , Ligantes , Modelos Biológicos , Simulação de Acoplamento MolecularRESUMO
In this work, we describe a set of features of Corynebacterium auriscanis CIP 106629 and details of the draft genome sequence and annotation. The genome comprises a 2.5-Mbp-long single circular genome with 1,797 protein-coding genes, 5 rRNA, 50 tRNA, and 403 pseudogenes, with a G+C content of 58.50%.