Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(21): 37846-37862, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258365

RESUMO

Plasmonic nanostructures are good candidates for refractive index sensing applications through the surface plasmon resonance due to their strong dependence on the surrounding dielectric media. However, typically low quality-factor limits their application in sensing devices. To improve the quality-factor, we have experimentally and theoretically investigated two-dimensional gold nanoparticle gratings situated on top of a waveguide. The coupling between the localized surface plasmon and waveguide modes results in Fano-type resonances, with high quality-factors, very similar to plasmonic surface lattice resonances. By combining plasmonic surface lattice resonance and waveguide theory, we present a theoretical framework describing the structures. By immersing the fabricated samples in three different media we find a sensitivity of ∼50 nm/RIU and figure of merit of 8.9, and demonstrate good agreement with the theory presented. Further analysis show that the sensitivity is very dependent on the waveguide parameters, grating constant and the dielectric environment, and by tuning these parameters we obtain a theoretical sensitivity of 887 nm/RIU.

2.
J Synchrotron Radiat ; 28(Pt 4): 1069-1080, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212870

RESUMO

Detectors with microchannel plates (MCPs) provide unique capabilities to detect single photons with high spatial (<10 µm) and timing (<25 ps) resolution. Although this detection technology was originally developed for applications with low event rates, recent progress in readout electronics has enabled their operation at substantially higher rates by simultaneous detection of multiple particles. In this study, the potential use of MCP detectors with Timepix readout for soft X-ray imaging and spectroscopic applications where the position and time of each photon needs to be recorded is investigated. The proof-of-principle experiments conducted at the Advanced Light Source demonstrate the capabilities of MCP/Timepix detectors to operate at relatively high input counting rates, paving the way for the application of these detectors in resonance inelastic X-ray scattering and X-ray photon correlation spectroscopy (XPCS) applications. Local count rate saturation was investigated for the MCP/Timepix detector, which requires optimization of acquisition parameters for a specific scattering pattern. A single photon cluster analysis algorithm was developed to eliminate the charge spreading effects in the detector and increase the spatial resolution to subpixel values. Results of these experiments will guide the ongoing development of future MCP devices optimized for soft X-ray photon-counting applications, which should enable XPCS dynamics measurements down to sub-microsecond timescales.

3.
Opt Express ; 16(20): 15958-63, 2008 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-18825233

RESUMO

Frequency mismatch in high-order microring-resonator filters is investigated. We demonstrate that this frequency mismatch is caused mainly by the intrafield distortion of scanning-electron-beam-lithography (SEBL) used in fabrication. The intrafield distortion of an SEBL system is measured, and a simple method is also proposed to correct this distortion. By applying this correction method, the average frequency mismatch in second-order microring-resonator filters was reduced from -8.6 GHz to 0.28 GHz.


Assuntos
Desenho de Equipamento/instrumentação , Filtração/instrumentação , Óptica e Fotônica/instrumentação , Simulação por Computador , Desenho Assistido por Computador/instrumentação , Elétrons , Lentes , Microscopia Eletrônica de Varredura/instrumentação , Refratometria/instrumentação , Reprodutibilidade dos Testes , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA