Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nature ; 626(8000): 852-858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326608

RESUMO

Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.


Assuntos
Aciltransferases , Amidoidrolases , Ácidos e Sais Biliares , Clostridium perfringens , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Aciltransferases/química , Aciltransferases/metabolismo , Alelos , Amidoidrolases/química , Amidoidrolases/metabolismo , Aminoácidos/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Cirurgia Bariátrica , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Domínio Catalítico , Clostridium perfringens/enzimologia , Clostridium perfringens/metabolismo , Fezes/química , Vesícula Biliar/metabolismo , Microbioma Gastrointestinal/fisiologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Ácido Taurocólico/metabolismo
2.
Crit Rev Biochem Mol Biol ; 57(5-6): 461-476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36403141

RESUMO

Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.


Assuntos
Coenzimas , Enxofre , Enxofre/metabolismo , Coenzimas/metabolismo , Tiamina , Ferro/química
3.
Biochemistry ; 63(8): 1038-1050, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577885

RESUMO

The ethylene-forming enzyme (EFE) is an Fe(II), 2-oxoglutarate (2OG), and l-arginine (l-Arg)-dependent oxygenase that either forms ethylene and three CO2/bicarbonate from 2OG or couples the decarboxylation of 2OG to C5 hydroxylation of l-Arg. l-Arg binds with C5 toward the metal center, causing 2OG to change from monodentate to chelate metal interaction and OD1 to OD2 switch of D191 metal coordination. We applied anaerobic UV-visible spectroscopy, X-ray crystallography, and computational approaches to three EFE systems with high-resolution structures. The ineffective l-Arg analogue l-canavanine binds to the EFE with O5 pointing away from the metal center while promoting chelate formation by 2OG but fails to switch the D191 metal coordination from OD1 to OD2. Substituting alanine for R171 that interacts with 2OG and l-Arg inactivates the protein, prevents metal chelation by 2OG, and weakens l-Arg binding. The R171A EFE had electron density at the 2OG binding site that was identified by mass spectrometry as benzoic acid. The substitution by alanine of Y306 in the EFE, a residue 12 Å away from the catalytic metal center, generates an interior cavity that leads to multiple local and distal structural changes that reduce l-Arg binding and significantly reduce the enzyme activity. Flexibility analyses revealed correlated and anticorrelated motions in each system, with important distinctions from the wild-type enzyme. In combination, the results are congruent with the currently proposed enzyme mechanism, reinforce the importance of metal coordination by OD2 of D191, and highlight the importance of the second coordination sphere and longer range interactions in promoting EFE activity.


Assuntos
Canavanina , Compostos Ferrosos , Liases , Compostos Ferrosos/metabolismo , Sítios de Ligação , Alanina , Ácidos Cetoglutáricos/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548397

RESUMO

Enzymes possessing the nickel-pincer nucleotide (NPN) cofactor catalyze C2 racemization or epimerization reactions of α-hydroxyacid substrates. LarB initiates synthesis of the NPN cofactor from nicotinic acid adenine dinucleotide (NaAD) by performing dual reactions: pyridinium ring C5 carboxylation and phosphoanhydride hydrolysis. Here, we show that LarB uses carbon dioxide, not bicarbonate, as the substrate for carboxylation and activates water for hydrolytic attack on the AMP-associated phosphate of C5-carboxylated-NaAD. Structural investigations show that LarB has an N-terminal domain of unique fold and a C-terminal domain homologous to aminoimidazole ribonucleotide carboxylase/mutase (PurE). Like PurE, LarB is octameric with four active sites located at subunit interfaces. The complex of LarB with NAD+, an analog of NaAD, reveals the formation of a covalent adduct between the active site Cys221 and C4 of NAD+, resulting in a boat-shaped dearomatized pyridine ring. The formation of such an intermediate with NaAD would enhance the reactivity of C5 to facilitate carboxylation. Glu180 is well positioned to abstract the C5 proton, restoring aromaticity as Cys221 is expelled. The structure of as-isolated LarB and its complexes with NAD+ and the product AMP identify additional residues potentially important for substrate binding and catalysis. In combination with these findings, the results from structure-guided mutagenesis studies lead us to propose enzymatic mechanisms for both the carboxylation and hydrolysis reactions of LarB that are distinct from that of PurE.


Assuntos
Cisteína/química , Hidrolases/metabolismo , Lactobacillus plantarum/enzimologia , Níquel/metabolismo , Nucleotídeos/biossíntese , Piridinas/química , Racemases e Epimerases/metabolismo , Carboxiliases , Catálise , Cristalografia por Raios X , Hidrolases/química , Hidrólise , Modelos Moleculares , Conformação Proteica , Racemases e Epimerases/química , Especificidade por Substrato
5.
Biochemistry ; 62(21): 3096-3104, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37831946

RESUMO

LarB catalyzes the first step of biosynthesis for the nickel-pincer nucleotide cofactor by converting nicotinic acid adenine dinucleotide (NaAD) to AMP and pyridinium-3,5-biscarboxylic acid mononucleotide (P2CMN). Prior studies had shown that LarB uses CO2 for substrate carboxylation and reported the structure of a Lactiplantibacillus plantarum LarB·NAD+ complex, revealing a covalent linkage between Cys221 and C4 of the pyridine ring. This interaction was proposed to promote C5 carboxylation, with C5-carboxylated-NaAD suggested to activate magnesium-bound water, leading to phosphoanhydride hydrolysis. Here, we extended the analysis of wild-type LarB by using ultraviolet-visible spectroscopy to obtain additional evidence for cysteinyl side chain attachment to the ring of NAD+, thus demonstrating that this linkage is not a crystallization artifact. Using the S127A variant of L. plantarum LarB, a form of the enzyme with a reduced rate of NaAD hydrolysis, we examined its interaction with the authentic substrate. The intermediate arising from C5 carboxylation of NaAD, dinicotinic acid adenine dinucleotide (DaAD), was identified by using mass spectrometry. S127A LarB exhibited spectroscopic evidence of a Cys221-NAD+ adduct, but a covalent enzyme-NaAD linkage was not detectable. We determined the S127A LarB·NaAD structure, providing new insights into the enzyme mechanism, and tentatively identified the position and mode of CO2 binding. The crystal structure revealed the location of the side chain for Glu180, which was previously disordered, but showed that it is not well positioned to abstract the C5 proton in the adduct species to restore aromaticity as Cys221 is expelled. Based on these combined results, we propose a revised catalytic mechanism of LarB..


Assuntos
NAD , Níquel , NAD/metabolismo , Níquel/química , Dióxido de Carbono , Nucleotídeos/metabolismo , Catálise , Cristalografia por Raios X
6.
J Biol Chem ; 298(7): 102131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700827

RESUMO

Sulfur-insertion reactions are essential for the biosynthesis of several cellular metabolites, including enzyme cofactors. In Lactobacillus plantarum, a sulfur-containing nickel-pincer nucleotide (NPN) cofactor is used as a coenzyme of lactic acid racemase, LarA. During NPN biosynthesis in L. plantarum, sulfur is transferred to a nicotinic acid-derived substrate by LarE, which sacrifices the sulfur atom of its single cysteinyl side chain, forming a dehydroalanine residue. Most LarE homologs contain three conserved cysteine residues that are predicted to cluster at the active site; however, the function of this cysteine cluster is unclear. In this study, we characterized LarE from Thermotoga maritima (LarETm) and show that it uses these three conserved cysteine residues to bind a [4Fe-4S] cluster that is required for sulfur transfer. Notably, we found LarETm retains all side chain sulfur atoms, in contrast to LarELp. We also demonstrate that when provided with L-cysteine and cysteine desulfurase from Escherichia coli (IscSEc), LarETm functions catalytically with IscSEc transferring sulfane sulfur atoms to LarETm. Native mass spectrometry results are consistent with a model wherein the enzyme coordinates sulfide at the nonligated iron atom of the [4Fe-4S] cluster, forming a [4Fe-5S] species, and transferring the noncore sulfide to the activated substrate. This proposed mechanism is like that of TtuA that catalyzes sulfur transfer during 2-thiouridine synthesis. In conclusion, we found that LarE sulfur insertases associated with NPN biosynthesis function either by sacrificial sulfur transfer from the protein or by transfer of a noncore sulfide bound to a [4Fe-4S] cluster.


Assuntos
Proteínas Ferro-Enxofre , Thermotoga maritima , Coenzimas/metabolismo , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Níquel/metabolismo , Nucleotídeos/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
7.
Chemistry ; 29(24): e202300138, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36701641

RESUMO

This study investigates dioxygen binding and 2-oxoglutarate (2OG) coordination by two model non-heme FeII /2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene-forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substrate l-Arg hydroxylation. Although both enzymes initially bind 2OG by using an off-line 2OG coordination mode, in PHF8, the substrate oxidation requires a transition to an in-line mode, whereas EFE is catalytically productive for ethylene production from 2OG in the off-line mode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM-MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of the in-line FeIII -OO⋅- intermediate in PHF8 and the off-line FeIII -OO⋅- intermediate in EFE.


Assuntos
Histona Desmetilases , Oxigenases , Ácidos Cetoglutáricos/química , Oxigênio , Compostos Férricos , Compostos Ferrosos/metabolismo , Etilenos
8.
Chemistry ; 29(24): e202300854, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37009811

RESUMO

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University, University of Oxford, and Michigan State University. The image depicts the oxygen diffusion channel in class 7 histone demethylase (PHF8) and ethylene-forming enzyme (EFE) and changes in the enzymes' conformations upon binding. Read the full text of the article at 10.1002/chem.202300138.


Assuntos
Histona Desmetilases , Ácidos Cetoglutáricos , Humanos , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases , Oxigênio , Compostos Ferrosos/metabolismo , Fatores de Transcrição
9.
Phys Chem Chem Phys ; 25(19): 13772-13783, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159254

RESUMO

The non-heme Fe(II) and 2-oxoglutarate (2OG) dependent ethylene-forming enzyme (EFE) catalyzes both ethylene generation and L-Arg hydroxylation. Despite experimental and computational progress in understanding the mechanism of EFE, no EFE variant has been optimized for ethylene production while simultaneously reducing the L-Arg hydroxylation activity. In this study, we show that the two L-Arg binding conformations, associated with different reactivity preferences in EFE, lead to differences in the intrinsic electric field (IntEF) of EFE. Importantly, we suggest that applying an external electric field (ExtEF) along the Fe-O bond in the EFE·Fe(III)·OO-˙·2OG·L-Arg complex can switch the EFE reactivity between L-Arg hydroxylation and ethylene generation. Furthermore, we explored how applying an ExtEF alters the geometry, electronic structure of the key reaction intermediates, and the individual energy contributions of second coordination sphere (SCS) residues through combined quantum mechanics/molecular mechanics (QM/MM) calculations. Experimentally generated variant forms of EFE with alanine substituted for SCS residues responsible for stabilizing the key intermediates in the two reactions of EFE led to changes in enzyme activity, thus demonstrating the key role of these residues. Overall, the results of applying an ExtEF indicate that making the IntEF of EFE less negative and stabilizing the off-line binding of 2OG is predicted to increase ethylene generation while reducing L-Arg hydroxylation.


Assuntos
Arginina , Compostos Férricos , Hidroxilação , Arginina/química , Etilenos/química
10.
Biometals ; 36(2): 303-313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182264

RESUMO

The LarA superfamily consists of nickel-dependent enzymes catalyzing racemization/epimerization reactions using a variety of α-hydroxy acids. The first-characterized LarA, a lactate racemase from Lactobacillus plantarum, led to the discovery of the nickel-pincer nucleotide (NPN) cofactor that is utilized by family members with alternative substrates, including malate racemase from Thermoanaerobacterium thermosaccharolyticum (Mar2). In this work, a higher resolution crystal structure of Mar2 was obtained with better data quality that revealed new structural and dynamic characteristics of the protein. A model of the Mar2 structure with bound cofactor and substrate was generated to uncover the common and the unique features among two distinct subgroups in the LarA superfamily. In addition, structure-guided mutational studies were used to examine the importance of residues that are modeled to interact with NPN and to explore which residues were critical for conferring specificity for malate. In particular, substitution of two residues involved in substrate binding in Mar2 to match the corresponding residues in LarA led to the acquisition of low levels of lactate racemase activity. Of additional interest, the substrate spectrum was expanded to include tartrate, an analog of malate. These new findings will help to better understand structure-function relationships of many other LarA homologs that are broadly distributed in bacterial and archaeal species.


Assuntos
Malatos , Níquel , Níquel/química , Racemases e Epimerases/genética , Proteínas de Bactérias/metabolismo
11.
Trends Biochem Sci ; 43(7): 517-532, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29709390

RESUMO

Since their discovery in the 1960s, the family of Fe(II)/2-oxoglutarate-dependent oxygenases has undergone a tremendous expansion to include enzymes catalyzing a vast diversity of biologically important reactions. Recent examples highlight roles in controlling chromatin modification, transcription, mRNA demethylation, and mRNA splicing. Others generate modifications in tRNA, translation factors, ribosomes, and other proteins. Thus, oxygenases affect all components of molecular biology's central dogma, in which information flows from DNA to RNA to proteins. These enzymes also function in biosynthesis and catabolism of cellular metabolites, including antibiotics and signaling molecules. Due to their critical importance, ongoing efforts have targeted family members for the development of specific therapeutics. This review provides a general overview of recently characterized oxygenase reactions and their key biological roles.


Assuntos
Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Halogenação , Humanos , Hidroxilação , Ferro/química , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ácidos Cetoglutáricos/química , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/enzimologia , Ribossomos/metabolismo , Especificidade da Espécie , Especificidade por Substrato , Terminologia como Assunto
12.
Biochem Soc Trans ; 50(4): 1187-1196, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35960008

RESUMO

The nickel-pincer nucleotide (NPN) coenzyme, a substituted pyridinium mononucleotide that tri-coordinates nickel, was first identified covalently attached to a lysine residue in the LarA protein of lactate racemase. Starting from nicotinic acid adenine dinucleotide, LarB carboxylates C5 of the pyridinium ring and hydrolyzes the phosphoanhydride, LarE converts the C3 and C5 carboxylates to thiocarboxylates, and LarC incorporates nickel to form a C-Ni and two S-Ni bonds, during the biosynthesis of this cofactor. LarB uses a novel carboxylation mechanism involving the transient formation of a cysteinyl-pyridinium adduct. Depending on the source of the enzyme, LarEs either catalyze a sacrificial sulfur transfer from a cysteinyl side chain resulting in the formation of dehydroalanine or they utilize a [4Fe-4S] cluster bound by three cysteine residues to accept and transfer a non-core sulfide atom. LarC is a CTP-dependent enzyme that cytidinylylates its substrate, adds nickel, then hydrolyzes the product to release NPN and CMP. Homologs of the four lar genes are widely distributed in microorganisms, with some species containing multiple copies of larA whereas others lack this gene, consistent with the cofactor serving other functions. Several LarA-like proteins were shown to catalyze racemase or epimerase activities using 2-hydroxyacid substrates other than lactic acid. Thus, lactate racemase is the founding member of a large family of NPN-containing enzymes.


Assuntos
Lactobacillus plantarum , Níquel , Coenzimas/química , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Níquel/química , Níquel/metabolismo , Nucleotídeos/metabolismo , Enxofre/metabolismo
13.
J Biol Chem ; 295(24): 8272-8284, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32366463

RESUMO

The lanthanide elements (Ln3+), those with atomic numbers 57-63 (excluding promethium, Pm3+), form a cofactor complex with pyrroloquinoline quinone (PQQ) in bacterial XoxF methanol dehydrogenases (MDHs) and ExaF ethanol dehydrogenases (EDHs), expanding the range of biological elements and opening novel areas of metabolism and ecology. Other MDHs, known as MxaFIs, are related in sequence and structure to these proteins, yet they instead possess a Ca2+-PQQ cofactor. An important missing piece of the Ln3+ puzzle is defining what features distinguish enzymes that use Ln3+-PQQ cofactors from those that do not. Here, using XoxF1 MDH from the model methylotrophic bacterium Methylorubrum extorquens AM1, we investigated the functional importance of a proposed lanthanide-coordinating aspartate residue. We report two crystal structures of XoxF1, one with and another without PQQ, both with La3+ bound in the active-site region and coordinated by Asp320 Using constructs to produce either recombinant XoxF1 or its D320A variant, we show that Asp320 is needed for in vivo catalytic function, in vitro activity, and La3+ coordination. XoxF1 and XoxF1 D320A, when produced in the absence of La3+, coordinated Ca2+ but exhibited little or no catalytic activity. We also generated the parallel substitution in ExaF to produce ExaF D319S and found that this variant loses the capacity for efficient ethanol oxidation with La3+ These results provide evidence that a Ln3+-coordinating aspartate is essential for the enzymatic functions of XoxF MDHs and ExaF EDHs, supporting the notion that sequences of these enzymes, and the genes that encode them, are markers for Ln3+ metabolism.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Ácido Aspártico/metabolismo , Elementos da Série dos Lantanídeos/farmacologia , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise/efeitos dos fármacos , Cálcio/farmacologia , Cristalografia por Raios X , Metanol/farmacologia , Methylobacterium extorquens/efeitos dos fármacos , Methylobacterium extorquens/enzimologia , Methylobacterium extorquens/crescimento & desenvolvimento , Oxirredução , Relação Estrutura-Atividade
14.
Coord Chem Rev ; 4482021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35250039

RESUMO

Conventional ureases possess dinuclear nickel active sites that are oxygen-stable and require a set of accessory proteins for metallocenter biosynthesis. By contrast, oxygen-labile ureases have active sites containing dual ferrous ions and lack a requirement for maturation proteins. The structures of the two types of urease are remarkably similar, with an active site architecture that includes two imidazoles and a carboxylate ligand coordinated to one metal, two imidazoles coordinated to the second metal, and a metal-bridging carbamylated lysine ligand. The electronic spectrum of the diferric form of the enzyme resembles that of methemerythrin. Resonance Raman spectroscopic analyses confirm the presence of a µ-oxo ligand and indicate the presence of one or more terminal solvent ligands.

15.
Appl Magn Reson ; 52(8): 971-994, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35250178

RESUMO

Proton Hyperfine Sublevel Correlation (1H-HYSCORE) experiments have been used to probe the ligation structure of the Fe(II) active site of taurine:2-oxoglutarate dioxygenase (TauD), a non-heme Fe(II) hydroxylase. To facilitate Electron Paramagnetic Resonance (EPR) experiments, Fe(II) derivatives of the enzyme were studied using nitric oxide as a substitute for molecular oxygen. The addition of NO to the enzyme yields an S = 3/2 {FeNO}7 paramagnetic center characterized by nearly axial EPR spectra with g⊥ = 4 and g|| = 2. Using results from (i) an X-ray crystallographic study of TauD crystallized under anaerobic conditions in the presence of both cosubstrate 2-oxoglutarate and substrate taurine, (ii) a published theoretical description of the {FeNO}7 derivative of this form of the enzyme, and (iii) previous 2H-Electron Spin Echo Envelope Modulation (ESEEM) studies, we were able to assign the proton cross peaks detected in orientation-selected 1H-HYSCORE spectra. Discrete contributions from the protons of two coordinated histidine ligands were resolved. If substrate taurine is absent from the complex, orientation-selective HYSCORE spectra show cross peaks that are less resolved and when combined with information obtained from continuous wave EPR, support an alternate binding scheme for 2-oxoglutarate. HYSCORE studies of TauD in the absence of 2-oxoglutarate show additional 1H cross peaks that can be assigned to two distinct bound water molecules. In addition, 1H and 14N cross peaks that arise from the coordinated histidine side chains show a change in NO coordination for this species. For all of the TauD species, 1H hyperfine couplings and their orientations are sensitive to the detailed electronic structure of the {FeNO}7 center.

16.
Crit Rev Biochem Mol Biol ; 53(6): 607-622, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30280944

RESUMO

Derived from an ancient ATP-hydrolyzing Rossmann-like fold protein, members of the PP-loop ATP pyrophosphatase family feature an absolutely conserved P-loop-like "SxGxDS/T" motif used for binding and presenting ATP for substrate adenylylation (AMPylation). Since the first family member was reported more than 20 years ago, numerous representatives catalyzing very diverse reactions have been characterized both functionally and structurally. The availability of more than 100 high quality structures in the protein data bank provides an excellent opportunity to gain structural insights into the generally conserved catalytic mechanism and the uniqueness of the reactions catalyzed by family members. In this work, we conducted a thorough database search for the PP-loop ATP pyrophosphatase family members, resulting in the most comprehensive and up-to-date collection that includes 18 enzyme families. Structure comparison of representative family members allowed us to identify common structure features in the core catalytic domain, as well as four highly variable regions that define the unique chemistry for each enzyme family. The newly identified enzymes, particularly those from pathogens, warrant further research to enlarge the scope of this ever-expanding and highly diverse enzyme superfamily for use in potential bioengineering and biomedical applications.


Assuntos
Pirofosfatases/química , Motivos de Aminoácidos , Animais , Humanos , Pirofosfatases/genética , Pirofosfatases/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(34): 9074-9079, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784764

RESUMO

The lar operon in Lactobacillus plantarum encodes five Lar proteins (LarA/B/C/D/E) that collaboratively synthesize and incorporate a niacin-derived Ni-containing cofactor into LarA, an Ni-dependent lactate racemase. Previous studies have established that two molecules of LarE catalyze successive thiolation reactions by donating the sulfur atom of their exclusive cysteine residues to the substrate. However, the catalytic mechanism of this very unusual sulfur-sacrificing reaction remains elusive. In this work, we present the crystal structures of LarE in ligand-free and several ligand-bound forms, demonstrating that LarE is a member of the N-type ATP pyrophosphatase (PPase) family with a conserved N-terminal ATP PPase domain and a unique C-terminal domain harboring the putative catalytic site. Structural analysis, combined with structure-guided mutagenesis, leads us to propose a catalytic mechanism that establishes LarE as a paradigm for sulfur transfer through sacrificing its catalytic cysteine residue.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Lactobacillus plantarum/enzimologia , Racemases e Epimerases/metabolismo , Enxofre/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Lactobacillus plantarum/genética , Modelos Moleculares , Mutação , Níquel/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Racemases e Epimerases/química , Racemases e Epimerases/genética , Homologia de Sequência de Aminoácidos
18.
J Biol Chem ; 293(32): 12303-12317, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29887527

RESUMO

Bacterial lactate racemase is a nickel-dependent enzyme that contains a cofactor, nickel pyridinium-3,5-bisthiocarboxylic acid mononucleotide, hereafter named nickel-pincer nucleotide (NPN). The LarC enzyme from the bacterium Lactobacillus plantarum participates in NPN biosynthesis by inserting nickel ion into pyridinium-3,5-bisthiocarboxylic acid mononucleotide. This reaction, known in organometallic chemistry as a cyclometalation, is characterized by the formation of new metal-carbon and metal-sulfur σ bonds. LarC is therefore the first cyclometallase identified in nature, but the molecular mechanism of LarC-catalyzed cyclometalation is unknown. Here, we show that LarC activity requires Mn2+-dependent CTP hydrolysis. The crystal structure of the C-terminal domain of LarC at 1.85 Å resolution revealed a hexameric ferredoxin-like fold and an unprecedented CTP-binding pocket. The loss-of-function of LarC variants with alanine variants of acidic residues leads us to propose a carboxylate-assisted mechanism for nickel insertion. This work also demonstrates the in vitro synthesis and purification of the NPN cofactor, opening new opportunities for the study of this intriguing cofactor and of NPN-utilizing enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Citidina Trifosfato/metabolismo , Lactobacillus plantarum/enzimologia , Níquel/metabolismo , Nucleotídeos/metabolismo , Compostos Organometálicos/metabolismo , Racemases e Epimerases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Níquel/química , Nucleotídeos/química , Compostos Organometálicos/química , Conformação Proteica , Racemases e Epimerases/química , Racemases e Epimerases/genética , Homologia de Sequência
19.
J Am Chem Soc ; 141(38): 15318-15326, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31475523

RESUMO

2-Oxoglutarate (2OG)-dependent oxygenases catalyze a wide range of chemical transformations via C-H bond activation. Prior studies raised the question of whether substrate hydroxylation by these enzymes occurs via a hydroxyl rebound or alkoxide mechanism and highlighted the need to understand the thermodynamic properties of transient intermediates. A recent spectroelectrochemical investigation of the 2OG-dependent oxygenase, taurine hydroxylase (TauD), revealed a strong link between the redox potential of the Fe(II)/Fe(III) couple and conformational changes of the enzyme. In this study, we show that the redox potential of wild-type TauD varies by 468 mV between the reduction of 2OG-Fe(III)-TauD (-272 mV) and oxidation of 2OG-Fe(II)-TauD (+196 mV). We use active site variants to investigate the structural origin of the redox-linked reorganization and the contributions of the metal-bound residues to the dynamic tuning of the redox potential of TauD. Time-dependent redox titrations show that reorganization occurs as a multistep process. Transient optical absorption and infrared spectroelectrochemistry show that substitution of any metal ligand alters the kinetics and thermodynamics of the reorganization. The H99A variant shows the largest net redox change relative to the wild-type protein, suggesting that redox-coupled protonation of H99 is required for high redox potentials of the metal. The D101Q and H255Q variants also suppress the conformational change, supporting their involvement in the structural rearrangement. Similar redox-linked conformational changes are observed in another 2OG dependent oxygenase, ethylene-forming enzyme, indicating that dynamic structural flexibility and the associated thermodynamic tuning may be a common phenomenon in this family of enzymes.


Assuntos
Ácidos Cetoglutáricos/química , Oxigenases de Função Mista/química , Escherichia coli/enzimologia , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Conformação Molecular , Oxirredução
20.
Proc Natl Acad Sci U S A ; 113(20): 5598-603, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27114550

RESUMO

The lactate racemase enzyme (LarA) of Lactobacillus plantarum harbors a (SCS)Ni(II) pincer complex derived from nicotinic acid. Synthesis of the enzyme-bound cofactor requires LarB, LarC, and LarE, which are widely distributed in microorganisms. The functions of the accessory proteins are unknown, but the LarB C terminus resembles aminoimidazole ribonucleotide carboxylase/mutase, LarC binds Ni and could act in Ni delivery or storage, and LarE is a putative ATP-using enzyme of the pyrophosphatase-loop superfamily. Here, we show that LarB carboxylates the pyridinium ring of nicotinic acid adenine dinucleotide (NaAD) and cleaves the phosphoanhydride bond to release AMP. The resulting biscarboxylic acid intermediate is transformed into a bisthiocarboxylic acid species by two single-turnover reactions in which sacrificial desulfurization of LarE converts its conserved Cys176 into dehydroalanine. Our results identify a previously unidentified metabolic pathway from NaAD using unprecedented carboxylase and sulfur transferase reactions to form the organic component of the (SCS)Ni(II) pincer cofactor of LarA. In species where larA is absent, this pathway could be used to generate a pincer complex in other enzymes.


Assuntos
Lactobacillus plantarum/enzimologia , NAD/análogos & derivados , Níquel/metabolismo , Racemases e Epimerases/fisiologia , Enxofre/metabolismo , Biocatálise , Carboxiliases/fisiologia , Redes e Vias Metabólicas , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA