Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 19(11): 3685-3699, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36037249

RESUMO

Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g., hydrogen bond, electrostatic interactions, etc.). The understanding of these interactions at the atomic level is therefore crucial, and solid-state nuclear magnetic resonance (NMR) has demonstrated itself as a very powerful technique for probing API-polymer interactions. Other reviews have also reported exciting approaches to study the structures and dynamic properties of ASDs and largely focused on the study of API-polymer miscibility and on the identification of API-polymer interactions. Considering the increased use of NMR in the field, the aim of this Review is to specifically highlight recent experimental strategies used to identify API-polymer interactions and report promising recent examples using one-dimensional (1D) and two-dimensional (2D) experiments by exploiting the following emerging approaches of very-high magnetic field and ultrafast magic angle spinning (MAS). A range of different ASDs spanning APIs and polymers with varied structural motifs is targeted to illustrate new ways to understand the mechanism of stability of ASDs to enable the design of new dispersions.


Assuntos
Polímeros , Polímeros/química , Espectroscopia de Ressonância Magnética/métodos , Ligação de Hidrogênio , Disponibilidade Biológica , Preparações Farmacêuticas , Solubilidade , Composição de Medicamentos/métodos
2.
Mol Pharm ; 18(9): 3519-3531, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34375100

RESUMO

The bioavailability of insoluble crystalline active pharmaceutical ingredients (APIs) can be enhanced by formulation as amorphous solid dispersions (ASDs). One of the key factors of ASD stabilization is the formation of drug-polymer interactions at the molecular level. Here, we used a range of multidimensional and multinuclear nuclear magnetic resonance (NMR) experiments to identify these interactions in amorphous acetaminophen (paracetamol)/hydroxypropylmethylcellulose acetyl succinate (HPMC-AS) ASDs at various drug loadings. At low drug loading (<20 wt %), we showed that 1H-13C through-space heteronuclear correlation experiments identify proximity between aromatic protons in acetaminophen with cellulose backbone protons in HPMC-AS. We also show that 14N-1H heteronuclear multiple quantum coherence (HMQC) experiments are a powerful approach in probing spatial interactions in amorphous materials and establish the presence of hydrogen bonds (H-bond) between the amide nitrogen of acetaminophen with the cellulose ring methyl protons in these ASDs. In contrast, at higher drug loading (40 wt %), no acetaminophen/HPMC-AS spatial proximity was identified and domains of recrystallization of amorphous acetaminophen into its crystalline form I, the most thermodynamically stable polymorph, and form II are identified. These results provide atomic scale understanding of the interactions in the acetaminophen/HPMC-AS ASD occurring via H-bond interactions.


Assuntos
Acetaminofen/farmacocinética , Derivados da Hipromelose/química , Acetaminofen/química , Disponibilidade Biológica , Química Farmacêutica , Excipientes/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Solubilidade , Ácido Succínico/química
3.
Magn Reson Chem ; 58(11): 1036-1048, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31880823

RESUMO

Hydroxypropylmethylcellulose (HPMC) acetyl succinate (HPMC-AS) is a key polymer used for the enablement of amorphous solid dispersions (ASDs) in oral solid dosage forms. Choice of the appropriate grade within the material is often made empirically by the manufacturer of small-scale formulations, followed by extensive real time stability. A key factor in understanding and predicting the performance of an ASD is related to the presence of hydrogen (or other) bonds between the polymer and active pharmaceutical ingredient (API), which will increase stability over the parameters captured by miscibility and predicted by the Gordon-Taylor equation. Solid state nuclear magnetic resonance (NMR) is particularly well equipped to probe spatial proximities, for example, between polymer and API; however, in the case of HPMC-AS, these interactions have been sometimes difficult to identity as the carbon-13 NMR spectra assignment is yet to be firmly established. Using feedstock, selectively substituted HPMC polymers, and NMR editing experiments, we propose here a comprehensive understanding of the chemical structure of HPMC-AS and a definitive spectral assignment of the 13 C NMR spectra of this polymer. The NMR data also capture the molar ratios of the acetate and succinate moieties present in HPMC-AS of various grades without the need for post treatment required by chromatography methods commonly use in pharmacopoeia. This knowledge will allow the prediction and measurement of interactions between polymers and APIs and therefore a rational choice of polymer grade to enhance the solid state stability of ASDs.


Assuntos
Metilcelulose/análogos & derivados , Polímeros/química , Configuração de Carboidratos , Isótopos de Carbono , Química Farmacêutica , Espectroscopia de Ressonância Magnética , Metilcelulose/química
4.
Mol Pharm ; 15(11): 4926-4932, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247039

RESUMO

Encapsulation of pharmaceuticals inside nanoporous materials is of increasing interest due to their possible applications as new generation therapeutics, theranostic platforms, or smart devices. Mesoporous silicas are leading materials to be used as nanohosts for pharmaceuticals. Further development of new generation of nanoscale therapeutics requires complete understanding of the complex host-guest interactions of organic molecules confined in nanosized chambers at different length scales. In this context, we present results showing control over formation and phase transition of nanosize crystals of model flexible pharmaceutical molecule tolbutamide confined inside 3.2 nm pores of the MCM-41 host. Using low loading levels (up to 30 wt %), we were able to stabilize the drug in highly dynamic amorphous/disordered state or direct the crystallization of the drug into highly metastable nanocrystalline form V of tolbutamide (at loading levels of 40 and 50 wt %), providing first experimental evidence for crystallization of pharmaceuticals inside the pores as narrow as 3.2 nm.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química , Tolbutamida/administração & dosagem , Cristalização , Transição de Fase , Porosidade , Tolbutamida/química
5.
Angew Chem Int Ed Engl ; 55(31): 8904-8, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27272008

RESUMO

The introduction of fluorine into the structure of pharmaceuticals has been an effective strategy for tuning their pharmacodynamic properties, with more than 40 new drugs entering the market in the last 15 years. In this context, (19) F NMR spectroscopy can be viewed as a useful method for investigating the host-guest chemistry of pharmaceuticals in nanosized drug-delivery systems. Although the interest in confined crystallization, nanosized devices, and porous catalysts is gradually increasing, understanding of the complex phase behavior of organic molecules confined within nanochambers or nanoreactors is still lacking. Using (19) F magic-angle-spinning NMR spectroscopy, we obtained detailed mechanistic insight into the crystallization of flufenamic acid (FFA) in a confined environment of mesoporous silica materials with different pore diameters (3.2-29 nm), providing direct experimental evidence for the formation of a molecular-liquid-like layer besides crystalline confined FFA form I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA