Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 16(1): 66-77, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30325716

RESUMO

Indium-tin oxide production has increased greatly in the last 20 years subsequent to increased global demand for touch screens and photovoltaics. Previous studies used measurements of indium in blood as an indicator of indium exposure and observed associations with adverse respiratory outcomes. However, correlations between measurements of blood indium and airborne respirable indium are inconsistent, in part because of the long half-life of indium in blood, but also because respirable indium measurements do not incorporate inhalable indium that can contribute to the observed biological burden. Information is lacking on relationships between respirable and inhalable indium exposure, which have implications for biological indicators like blood indium. The dual IOM sampler includes the foam disc insert and can simultaneously collect respirable and inhalable aerosol. Here, the field performance of the dual IOM sampler was evaluated by comparing performance with the respirable cyclone and traditional IOM for respirable and inhalable indium and dust exposure, respectively. Side-by-side area air samples were collected throughout an indium-tin oxide manufacturing facility. Cascade impactors were used to determine particle size distribution. Several statistical methods were used to evaluate the agreement between the pairs of samplers including calculating the concordance correlation coefficient and its accuracy and precision components. One-way ANOVA was used to evaluate the effect of dust concentration on sampler differences. Respirable indium measurements showed better agreement (concordance correlation coefficient: 0.932) compared to respirable dust measurements (concordance correlation coefficient: 0.777) with significant differences observed in respirable dust measurements. The dual IOM measurements had high agreement with the traditional IOM for inhalable indium (concordance correlation coefficient: 0.997) but lower agreement for inhalable dust (concordance correlation coefficient: 0.886 and accuracy: 0.896) with a significantly large mean bias (-146.9 µg/m3). Dust concentration significantly affected sampler measurements of inhalable dust and inhalable indium. Results from this study suggest that the dual IOM is a useful single sampler for simultaneous measurements of occupational exposure to respirable and inhalable indium.


Assuntos
Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Índio/análise , Exposição por Inalação/análise , Poeira/análise , Instalações Industriais e de Manufatura , Exposição Ocupacional/análise , Tamanho da Partícula , Compostos de Estanho
2.
Ann Work Expo Health ; 64(2): 175-184, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31803905

RESUMO

Increased global demand for touch screens, photovoltaics, and optoelectronics has resulted in an increase in the production of indium-tin oxide (ITO). Occupational exposure to indium compounds is associated with the development of indium lung disease. Although many previous epidemiologic investigations highlight an excess of lung abnormalities in workplaces where ITO is produced, few assessments of occupational exposure to respirable and inhalable indium are reported to date. The objective of this study was to identify the determinants of respirable and inhalable indium at an ITO production facility to target exposure interventions. In 2012 and 2014, we conducted exposure assessments at an ITO production facility and collected full-shift personal respirable (n = 159) and inhalable (n = 57) indium samples. We also observed workers and recorded information on task duration and location, materials used, and use of personal protective equipment (PPE). Tasks (n = 121) recorded in task diaries were categorized into 40 similar task groups using the Advanced REACH Tool and process-related information. Mixed-effects models were fit separately for log-transformed respirable and inhalable indium, with random effect of subject and fixed effects of task groups. Overall, respirable and inhalable indium measurements ranged from 0.1 to 796.6 µg m-3 and 1.6 to 10 585.7 µg m-3, respectively, and were highly correlated with Spearman correlation coefficient of 0.90. The final model for respirable indium explained 36.3% of total variance and identified sanding, powder transfer tasks in reclaim, powder transfer tasks in refinery, handling indium materials, and liquid transfer tasks in ITO production as tasks associated with increased respirable indium exposure. The final model for inhalable indium explained 24.6% of total variance and included powder transfer tasks in ITO production, cleaning cylinder or tile, and handling indium material tasks. Tasks identified as strong predictors of full-shift exposure to respirable and inhalable indium can guide the use of engineering, administrative, and PPE controls designed to mitigate occupational exposure to indium. Moreover, since the tasks were aligned with REACH activities, results from this study can also be used to inform REACH activity scenarios.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/efeitos adversos , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Índio/efeitos adversos , Índio/análise , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Exposição Ocupacional/análise , Compostos de Estanho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA