Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 47(2): 672-680, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797397

RESUMO

PURPOSE: To present a novel method, based on convolutional neural networks (CNN), to automate weighted log subtraction (WLS) for dual-energy (DE) fluoroscopy to be used in conjunction with markerless tumor tracking (MTT). METHODS: A CNN was developed to automate WLS (aWLS) of DE fluoroscopy to enhance soft tissue visibility. Briefly, this algorithm consists of two phases: training a CNN architecture to predict pixel-wise weighting factors followed by application of WLS subtraction to reduce anatomical noise. To train the CNN, a custom phantom was built consisting of aluminum (Al) and acrylic (PMMA) step wedges. Per-pixel ground truth (GT) weighting factors were calculated by minimizing the contrast of Al in the step wedge phantom to train the CNN. The pretrained model was then utilized to predict pixel-wise weighting factors for use in WLS. For comparison, the weighting factor was manually determined in each projection (mWLS). A thorax phantom with five simulated spherical targets (5-25 mm) embedded in a lung cavity, was utilized to assess aWLS performance. The phantom was imaged with fast-kV dual-energy (120 and 60 kVp) fluoroscopy using the on-board imager of a commercial linear accelerator. DE images were processed offline to produce soft tissue images using both WLS methods. MTT was compared using soft tissue images produced with both mWLS and aWLS techniques. RESULTS: Qualitative evaluation demonstrated that both methods achieved soft tissue images with similar quality. The use of aWLS increased the number of tracked frames by 1-5% compared to mWLS, with the largest increase observed for the smallest simulated tumors. The tracking errors for both methods produced agreement to within 0.1 mm. CONCLUSIONS: A novel method to perform automated WLS for DE fluoroscopy was developed. Having similar soft tissue quality as well as bone suppression capability as mWLS, this method allows for real-time processing of DE images for MTT.


Assuntos
Fluoroscopia , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Redes Neurais de Computação , Técnica de Subtração , Calibragem , Imagens de Fantasmas
2.
Adv Radiat Oncol ; 5(5): 1006-1013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33089019

RESUMO

PURPOSE: To describe and characterize fast-kV switching, dual-energy (DE) imaging implemented within the on-board imager of a commercial linear accelerator for markerless tumor tracking (MTT). METHODS AND MATERIALS: Fast-kV switching, DE imaging provides for rapid switching between programmed tube voltages (ie, 60 and 120 kVp) from one image frame to the next. To characterize this system, the weighting factor used for logarithmic subtraction and signal difference-to-noise ratio were analyzed as a function of time and frame rate. MTT was evaluated using a thorax motion phantom and fast kV, DE imaging was compared versus single energy (SE) imaging over 360 degrees of rotation. A template-based matching algorithm was used to track target motion on both DE and SE sequences. Receiver operating characteristics were used to compare tracking results for both modalities. RESULTS: The weighting factor was inversely related to frame rate and stable over time. After applying the frame rate-dependent weighting factor, the signal difference-to-noise ratio was consistent across all frame rates considered for simulated tumors ranging from 5 to 25 mm in diameter. An analysis of receiver operating characteristics curves showed improved tracking with DE versus SE imaging. The area under the curve for the 10-mm target ranged from 0.821 to 0.858 for SE imaging versus 0.968 to 0.974 for DE imaging. Moreover, the residual tracking errors for the same target size ranged from 2.02 to 2.18 mm versus 0.79 to 1.07 mm for SE and DE imaging, respectively. CONCLUSIONS: Fast-kV switching, DE imaging was implemented on the on-board imager of a commercial linear accelerator. DE imaging resulted in improved MTT accuracy over SE imaging. Such an approach may have application for MTT of patients with lung cancer receiving stereotactic body radiation therapy, particularly for small tumors where MTT with SE imaging may fail.

3.
Phys Med Biol ; 65(1): 015013, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31775131

RESUMO

To evaluate fast-kV switching (FS) dual energy (DE) cone beam computed tomography (CBCT) using the on-board imager (OBI) of a commercial linear accelerator to produce virtual monoenergetic (VM) and relative electron density (RED) images. Using an polynomial attenuation mapping model, CBCT phantom projections obtained at 80 and 140 kVp with FS imaging, were decomposed into equivalent thicknesses of aluminum (Al) and polymethyl methacrylate (PMMA). All projections were obtained with the titanium foil and bowtie filter in place. Basis material projections were then recombined to create VM images by using the linear attenuation coefficients at the specified energy for each material. Similarly, RED images were produced by replacing the linear attenuation values of Al and PMMA by their respective RED values in the projection space. VM and RED images were reconstructed using Feldkamp-Davis-Kress (FDK) and an iterative algorithm (iCBCT, Varian Medical Systems). Hounsfield units (HU), contrast-to-noise ratio (CNR) and RED values were compared against known values. The results after VM-CBCT production showed good material decomposition and consistent HUVM values, with measured root mean square errors (RMSE) from theoretical values, after FDK reconstruction, of 20.5, 5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV, respectively. The largest CNR improvements, when compared to polychromatic images, were observed for the 50 keV VM images. Image noise was reduced up to 28% in the VM-CBCT images after iterative image reconstruction. RED values measured for our method resulted in a mean percentage error of 0.0% ± 1.8%. This study describes a method to generate VM-CBCT and RED images using FS-DE scans obtained using the OBI of a linac, including the effects of the bowtie filter. The creation of VM and RED images increases the dynamic range of CBCT images, and provides additional data that may be used for adaptive radiotherapy, and on table verification for radiotherapy treatments.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Humanos
4.
Phys Med Biol ; 64(3): 03NT01, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566913

RESUMO

Dual-energy (DE) imaging using planar imaging with an on-board imager (OBI) is being considered in radiotherapy. We describe here a custom phantom designed to optimize DE imaging parameters using the OBI of a commercial linear accelerator. The phantom was constructed of lung-, tissue- and bone-equivalent material slabs. Five simulated tumors located at two different depths were encased in the lung-equivalent materials. Two slabs with bone-equivalent material inserts were constructed to simulate ribs, which overlap the simulated tumors. DE bone suppression was performed using a weighted logarithmic subtraction based on an iterative method that minimized the contrast between simulated bone- and lung-equivalent materials. The phantom was subsequently used to evaluate different combinations of high-low kV x-ray pairs of images based on the signal-difference-to-noise ratio (SDNR) metric. The results show a strong correlation between tumor visibility and selected energy pairs, where higher energy separation leads to larger SDNR values. To evaluate the effect of image post-processing methods on tumor visibility, an anti-correlated noise reduction (ACNR) technique and adaptive kernel scatter correction method were applied to subsequent DE images. Application of the ACNR technique approximately doubled the SDNR values, hence increasing tumor visibility, while scatter correction had little effect on SDNR values. This phantom allows for quick image acquisition and optimization of imaging parameters and weighting factors. Optimized DE imaging increases soft tissue visibility and may allow for markerless motion tracking of lung tumors.


Assuntos
Imagens de Fantasmas , Radiografia/instrumentação , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Movimento , Aceleradores de Partículas , Razão Sinal-Ruído
5.
Med Phys ; 46(7): 3235-3244, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059124

RESUMO

PURPOSE: To evaluate markerless tumor tracking (MTT) using fast-kV switching dual-energy (DE) fluoroscopy on a bench top system. METHODS: Fast-kV switching DE fluoroscopy was implemented on a bench top which includes a turntable stand, flat panel detector, and x-ray tube. The customized generator firmware enables consecutive x-ray pulses that alternate between programmed high and low energies (e.g., 60 and 120 kVp) with a maximum frame rate of 15 Hz. In-house software was implemented to perform weighted DE subtraction of consecutive images to create an image sequence that removes bone and enhances soft tissues. The weighting factor was optimized based on gantry angle. To characterize this system, a phantom was used that simulates the chest anatomy and tumor motion in the lung. Five clinically relevant tumor sizes (5-25 mm diameter) were considered. The targets were programmed to move in the inferior-superior direction of the phantom, perpendicular to the x-ray beam, using a cos4 waveform to mimic respiratory motion. Target inserts were then tracked with MTT software using a template matching method. The optimal computed tomography (CT) slice thickness for template generation was also evaluated. Tracking success rate and accuracy were calculated in regions of the phantom where the target overlapped ribs vs spine, to compare the performance of single energy (SE) and DE imaging methods. RESULTS: For the 5 mm target, a CT slice thickness of 0.75 mm resulted in the lowest tracking error. For the larger targets (≥10 mm) a CT slice thickness ≤2 mm resulted in comparable tracking errors for SE and DE images. Overall DE imaging improved MTT accuracy, relative to SE imaging, for all tumor targets in a rotational acquisition. Compared to SE, DE imaging increased tracking success rate of small target inserts (5 and 10 mm). For fast motion tracking, success rates improved from 23% to 64% and 74% to 90% for 5 and 10 mm targets inserts overlapping ribs, respectively. For slow moving targets success rates improved from 19% to 59% and 59% to 91% in 5 and 10 mm targets overlapping the ribs, respectively. Similar results were observed when the targets overlapped the spine. For larger targets (≥15 mm) tracking success rates were comparable using SE and DE imaging. CONCLUSION: This work presents the first results of MTT using fast-kV switching DE fluoroscopy. Using DE imaging has improved the tracking accuracy of MTT, especially for small targets. The results of this study will guide the future implementation of fast-kV switching DE imaging using the on-board imager of a linear accelerator.


Assuntos
Fluoroscopia/instrumentação , Neoplasias Pulmonares/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/fisiopatologia , Movimento , Imagens de Fantasmas , Rotação , Software , Fatores de Tempo
6.
Front Oncol ; 8: 292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109215

RESUMO

Template-based matching algorithms are currently being considered for markerless motion tracking of lung tumors. These algorithms use tumor templates derived from the planning CT scan, and track the motion of the tumor on single energy fluoroscopic images obtained at the time of treatment. In cases where bone may obstruct the view of the tumor, dual energy fluoroscopy may be used to enhance soft tissue contrast. The goal of this study is to predict which tumors will have a high degree of accuracy for markerless motion tracking based on radiomic features obtained from the planning CT scan, using peak-to-sidelobe ratio (PSR) as a surrogate of tracking accuracy. In this study, CT imaging data of 8 lung cancer patients were obtained and analyzed through the open source IBEX program to generate 2,287 radiomic features. Agglomerative hierarchical clustering was used to narrow down these features into 145 clusters comprised of the highest correlation to PSR. The features among the clusters with the least inter-correlation were then chosen to limit redundancy in the data. The results of this study demonstrated a number of radiomic features that are positively correlated to PSR. The features with the highest degree of correlation included complexity, orientation and range. This approach may be used to determine patients for whom markerless motion tracking would be beneficial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA