Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Med Virol ; 34(4): e2554, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38862398

RESUMO

The Varicella-zoster virus (VZV), classified as a neurotropic member of the Herpesviridae family, exhibits a characteristic pathogenicity, predominantly inducing varicella, commonly known as chickenpox, during the initial infectious phase, and triggering the reactivation of herpes zoster, more commonly recognized as shingles, following its emergence from a latent state. The pathogenesis of VZV-associated neuroinflammation involves a complex interplay between viral replication within sensory ganglia and immune-mediated responses that contribute to tissue damage and dysfunction. Upon primary infection, VZV gains access to sensory ganglia, establishing latent infection within neurons. During reactivation, the virus can spread along sensory nerves, triggering a cascade of inflammatory mediators, chemokines, and immune cell infiltration in the affected neural tissues. The role of both adaptive and innate immune reactions, including the contributions of T and B cells, macrophages, and dendritic cells, in orchestrating the immune-mediated damage in the central nervous system is elucidated. Furthermore, the aberrant activation of the natural defence mechanism, characterised by the dysregulated production of immunomodulatory proteins and chemokines, has been implicated in the pathogenesis of VZV-induced neurological disorders, such as encephalitis, myelitis, and vasculopathy. The intricate balance between protective and detrimental immune responses in the context of VZV infection emphasises the necessity for an exhaustive comprehension of the immunopathogenic mechanisms propelling neuroinflammatory processes. Despite the availability of vaccines and antiviral therapies, VZV-related neurological complications remain a significant concern, particularly in immunocompromised individuals and the elderly. Elucidating these mechanisms might facilitate the emergence of innovative immunomodulatory strategies and targeted therapies aimed at mitigating VZV-induced neuroinflammatory damage and improving clinical outcomes. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of VZV infections.


Assuntos
Herpesvirus Humano 3 , Humanos , Herpesvirus Humano 3/imunologia , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpes Zoster/virologia , Herpes Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/etiologia , Animais , Varicela/virologia , Varicela/imunologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/virologia
2.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203761

RESUMO

Lung cancer is a pervasive and challenging disease with limited treatment options, with global health challenges often present with complex molecular profiles necessitating the exploration of innovative therapeutic strategies. Single-target drugs have shown limited success due to the heterogeneity of this disease. Multitargeted drug designing is imperative to combat this complexity by simultaneously targeting multiple target proteins and pathways, which can enhance treatment efficacy and overcome resistance by addressing the dynamic nature of the disease and stopping tumour growth and spread. In this study, we performed the molecular docking studies of Drug Bank compounds with a multitargeted approach against crucial proteins of lung cancer such as heat shock protein 5 (BIP/GRP78) ATPase, myosin 9B RhoGAP, EYA2 phosphatase inhibitor, RSK4 N-terminal kinase, and collapsin response mediator protein-1 (CRMP-1) using HTVS, SP with XP algorithms, and poses were filtered using MM\GBSA which identified [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BenCarMethIn YlPro-Phosphonic Acid) (DB02504) as multitargeted drug candidate with docking and MM\GBSA score ranges from -5.83 to -10.66 and -7.56 to -50.14 Kcal/mol, respectively. Further, the pharmacokinetic and QM-based DFT studies have shown complete acceptance results, and interaction fingerprinting reveals that ILE, GLY, VAL, TYR, LEU, and GLN were among the most interacting residues. The 100 ns MD simulation in the SPC water model with NPT ensemble showed stable performance with deviation and fluctuations <2 Å with huge interactions, making it a promising multitargeted drug candidate; however, experimental studies are needed before use.


Assuntos
Neoplasias Pulmonares , Ácidos Fosforosos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Adenosina Trifosfatases , Algoritmos , Chaperona BiP do Retículo Endoplasmático
3.
Curr Issues Mol Biol ; 45(7): 5752-5764, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37504279

RESUMO

With more than a million deaths each year, breast cancer is the top cause of death in women. Around 70% of breast cancers are hormonally responsive. Although several therapeutic options exist, cancer resistance and recurrence render them inefficient and insufficient. The major key reason behind this is the failure in the regulation of the cell death mechanism. In addition, ROS was also found to play a major role in this problem. The therapeutic benefits of Smac mimetic compound (SMC) BV6 on MCF7 were examined in the current study. Treatment with BV6 reduces viability and induces apoptosis in MCF7 breast cancer cells. BV6 suppresses autophagy and has demonstrated a defensive role in cancer cells against oxidative stress caused by H2O2. Overall, the present investigation shows that SMC has therapeutic and cytoprotective potential against oxidative stress in cancer cells. These Smac mimetic compounds may be used as anti-cancer drugs as well as antioxidants alone or in conjunction with other commonly used antioxidants.

4.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139037

RESUMO

Cathepsin L (CTSL) expression is dysregulated in a variety of cancers. Extensive empirical evidence indicates their direct participation in cancer growth, angiogenic processes, metastatic dissemination, and the development of treatment resistance. Currently, no natural CTSL inhibitors are approved for clinical use. Consequently, the development of novel CTSL inhibition strategies is an urgent necessity. In this study, a combined machine learning (ML) and structure-based virtual screening strategy was employed to identify potential natural CTSL inhibitors. The random forest ML model was trained on IC50 values. The accuracy of the trained model was over 90%. Furthermore, we used this ML model to screen the Biopurify and Targetmol natural compound libraries, yielding 149 hits with prediction scores >0.6. These hits were subsequently selected for virtual screening using a structure-based approach, yielding 13 hits with higher binding affinity compared to the positive control (AZ12878478). Two of these hits, ZINC4097985 and ZINC4098355, have been shown to strongly bind CTSL proteins. In addition to drug-like properties, both compounds demonstrated high affinity, ligand efficiency, and specificity for the CTSL binding pocket. Furthermore, in molecular dynamics simulations spanning 200 ns, these compounds formed stable protein-ligand complexes. ZINC4097985 and ZINC4098355 can be considered promising candidates for CTSL inhibition after experimental validation, with the potential to provide therapeutic benefits in cancer management.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Catepsina L/metabolismo , Ligantes , Detecção Precoce de Câncer , Neoplasias/tratamento farmacológico , Simulação de Acoplamento Molecular
5.
Saudi Pharm J ; 26(6): 817-821, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30202222

RESUMO

The use of traditional medicine for treatment of various diseases is a common practise in most of the developing countries including the Kingdom of Saudi Arabia especially in rural areas. In this survey, Al Khobah village was selected to study the status of Traditional Medicine. Al Khobah village is located on the Southern boarders of the kingdom and characterized by diverse topography and moderate weather. The plants with medicinal uses were collected, identified and their methods of preparation and uses were recorded. After gathering all these information from the local people, literature survey was conducted on each plant to get information about pharmacological activities and weather they support the traditional use or not. The survey revealed that the uses of some plants are consistent with the experimental data in the literature. Some other plants were studied; however, they still need pharmacological investigation to prove the claimed uses. Other plant did not subject to any scientific investigation.

6.
Mol Cancer ; 16(1): 84, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446200

RESUMO

BACKGROUND: Cancer/testis (CT) genes have expression normally restricted to the testis, but become activated during oncogenesis, so they have excellent potential as cancer-specific biomarkers. Evidence is starting to emerge to indicate that they also provide function(s) in the oncogenic programme. Human TEX19 is a recently identified CT gene, but a functional role for TEX19 in cancer has not yet been defined. METHODS: siRNA was used to deplete TEX19 levels in various cancer cell lines. This was extended using shRNA to deplete TEX19 in vivo. Western blotting, fluorescence activated cell sorting and immunofluorescence were used to study the effect of TEX19 depletion in cancer cells and to localize TEX19 in normal testis and cancer cells/tissues. RT-qPCR and RNA sequencing were employed to determine the changes to the transcriptome of cancer cells depleted for TEX19 and Kaplan-Meier plots were generated to explore the relationship between TEX19 expression and prognosis for a range of cancer types. RESULTS: Depletion of TEX19 levels in a range of cancer cell lines in vitro and in vivo restricts cellular proliferation/self-renewal/reduces tumour volume, indicating TEX19 is required for cancer cell proliferative/self-renewal potential. Analysis of cells depleted for TEX19 indicates they enter a quiescent-like state and have subtle defects in S-phase progression. TEX19 is present in both the nucleus and cytoplasm in both cancerous cells and normal testis. In cancer cells, localization switches in a context-dependent fashion. Transcriptome analysis of TEX19 depleted cells reveals altered transcript levels of a number of cancer-/proliferation-associated genes, suggesting that TEX19 could control oncogenic proliferation via a transcript/transcription regulation pathway. Finally, overall survival analysis of high verses low TEX19 expressing tumours indicates that TEX19 expression is linked to prognostic outcomes in different tumour types. CONCLUSIONS: TEX19 is required to drive cell proliferation in a range of cancer cell types, possibly mediated via an oncogenic transcript regulation mechanism. TEX19 expression is linked to a poor prognosis for some cancers and collectively these findings indicate that not only can TEX19 expression serve as a novel cancer biomarker, but may also offer a cancer-specific therapeutic target with broad spectrum potential.


Assuntos
Biomarcadores Tumorais/genética , Células Germinativas/metabolismo , Neoplasias/genética , Proteínas Nucleares/genética , Testículo/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/genética , Células Germinativas/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Prognóstico , Proteínas de Ligação a RNA , Testículo/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517073

RESUMO

Cervical cancer poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide and resulting in approximately 300,000 deaths yearly, predominantly caused by high-risk human papillomavirus strains (HPV), mainly types 16 and 18. The scenario poses the urgent need of the hour to develop effective treatment strategies that can address the complexity of cervical cancer and multitargeted inhibitor designing that holds promise as it can simultaneously target multiple proteins and pathways involved in its progression and have the potential to enhance treatment efficacy, reduce the likelihood of drug resistance. In this study, we have performed multitargeted molecular docking of FDA-approved drugs against cervical cancer replication and maintenance proteins- Xenopus kinesin-like protein-2 (3KND), cell division cycle protein-20 (4N14), MCM2-histone complex (4UUZ) and MCM6 Minichromosome maintenance (2KLQ) with HTVS, SP and XP algorithms and have obtained the docking and MM\GBSA score ranging from -8.492 to -5.189 Kcal/mol and -58.16 to -39.07 Kcal/mol. Further, the molecular interaction fingerprints identified ALA, THR, SER, ASN, LEU, and ILE were among the most interacted residues, leaning towards hydrophobic and polar amino acids. The pharmacokinetics and DFT of the compound have shown promising results. The complexes were simulated for 100 ns to study the stability by computing the deviation, fluctuations, and intermolecular interactions formed during the simulation. This study produced promising results, satisfying the criteria that Mitoxantrone 2HCl can be a multitargeted inhibitor against cervical cancer proteins-however, experimental validation is a must before human use.Communicated by Ramaswamy H. Sarma.

8.
Saudi J Biol Sci ; 31(8): 104035, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934013

RESUMO

Interleukin-8 (IL-8) is a chemokine, a type of signaling molecule that has a role in immunological responses and inflammation. In recent years, IL-8 is additionally related to cancer growth and recurrence. Breast cancer growth, progression, and metastatic development are all linked to IL-8. Breast cancer cells are known to develop faster when IL-8 stimulates their proliferation and survival. It can also cause angiogenesis, or the creation of new blood vessels, which is necessary for tumor nutrition and growth. IL-8 and curcumin have been subjects of interest in drug design, particularly in the context of inflammation-related disorders and cancer. This study aims to give an overview of the role of IL-8. Inhibitor-based treatment approaches were being used to target IL-8 with curcumin. Molecular docking method was employed to find a potential interaction to supress competitive inhibition of IL-8 with curcumin. PASS analysis and ADMET characteristics were also being carried out. In the end, IL-8 complexed with curcumin is chosen for MD simulations. Overall, our results showed that during the simulation, the complex stayed comparatively stable. It is also possible to investigate curcumin further as a possible treatment option. The combined results imply that IL-8 and their genetic alterations can be studied in precision cancer therapeutic treatments, utilizing target-driven therapy and early diagnosis.

9.
J Biomol Struct Dyn ; 42(6): 2965-2975, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37184150

RESUMO

Tropomyosin receptor kinase B (TrkB), also known as neurotrophic tyrosine kinase receptor type 2 (NTRK2), is a protein that belongs to the family of receptor tyrosine kinases (RTKs). NTRK2 plays a crucial role in regulating the development and maturation of the central nervous system (CNS) and peripheral nervous system (PNS). Elevated TrkB expression levels observed in different pathological conditions make it a potential target for therapeutic interventions against neurological disorders, including depression, anxiety, Alzheimer's disease, Parkinson's disease, and certain types of cancer. Targeting TrkB using small molecule inhibitors is a promising strategy for the treatment of a variety of neurological disorders. In this research, a systematic virtual screening was carried out on phytoconstituents found in the IMPPAT library to identify compounds potentially inhibiting TrkB. The retrieved compounds from the IMPPAT library were first filtered using Lipinski's rule of five. The compounds were then sorted based on their docking score and ligand efficiency. In addition, PAINS, ADMET, and PASS evaluations were carried out for selecting drug-like compounds. Finally, in interaction analysis, we found two phytoconstituents, Wedelolactone and 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid (DMCA), which possessed considerable docking scores and specificity on the TrkB ATP-binding pocket. The selected compounds were further assessed employing molecular dynamics (MD) simulations and essential dynamics. The results revealed that the elucidated compounds bind well with the TrkB binding pocket and lead to fewer conformations fluctuations. This study highlighted using phytoconstituents, Wedelolactone and DMCA as starting leads in developing novel TrkB inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias , Doenças do Sistema Nervoso , Humanos , Tropomiosina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
10.
Pathol Res Pract ; 253: 154998, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056133

RESUMO

Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Neoplasias Bucais , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Regulação Neoplásica da Expressão Gênica
11.
Immunol Res ; 72(2): 242-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37880483

RESUMO

Millions of people's lives are being devastated by dengue virus (DENV), a severe tropical and subtropical illness spread by mosquitoes and other vectors. Dengue fever may be self-limiting like a common cold or can rapidly progress to catastrophic dengue hemorrhagic fever or dengue shock syndrome. With four distinct dengue serotypes (DENV1-4), each with the potential to contain antibody-boosting complicated mechanisms, developing a dengue vaccine has been an ambitious challenge. Here, we used a computational pan-vaccinomics-based vaccine design strategy (reverse vaccinology) for all 4 DENV serotypes acquired from different regions of the world to develop a new and safe vaccine against DENV. Consequently, only five mapped epitopes from all the 4 serotypes were shown to be extremely effective for the construction of multi-epitope vaccine constructs. The suggested vaccine construct V5 from eight vaccine models was thus classified as an antigenic, non-allergenic, and stable vaccine model. Moreover, molecular docking and molecular dynamics simulation was performed for the V5 vaccine candidate against the HLAs and TRL2 and 4 immunological receptors. Later, the vaccine sequence was transcribed into the cDNA to generate an expression vector for the Escherichia coli K12 strain. Our research suggests that this vaccine design (V5) has promising potential as a dengue vaccine. However, further experimental analysis into the vaccine's efficacy might be required for the V5 proper validation to combat all DENV serotypes.

12.
Pathol Res Pract ; 253: 155019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091883

RESUMO

The lncRNA PVT1 has emerged as a pivotal component in the intricate landscape of cancer pathogenesis, particularly in lung cancer. PVT1, situated in the 8q24 chromosomal region, has garnered attention for its aberrant expression patterns in lung cancer, correlating with tumor progression, metastasis, and poor prognosis. Numerous studies have unveiled the diverse mechanisms PVT1 contributes to lung cancer pathogenesis. It modulates critical pathways, such as cell proliferation, apoptosis evasion, angiogenesis, and epithelial-mesenchymal transition. PVT1's interactions with other molecules, including microRNAs and proteins, amplify its oncogenic influence. Recent advancements in genomic and epigenetic analyses have also illuminated the intricate regulatory networks that govern PVT1 expression. Understanding PVT1's complex involvement in lung cancer holds substantial clinical implications. Targeting PVT1 presents a promising avenue for developing novel diagnostic biomarkers and therapeutic interventions. This abstract encapsulates the expanding knowledge regarding the oncogenic role of PVT1 in lung cancer, underscoring the significance of further research to unravel its complete mechanistic landscape and exploit its potential for improved patient outcomes.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , MicroRNAs/genética , Transformação Celular Neoplásica/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética
13.
Pathol Res Pract ; 253: 154957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000201

RESUMO

The long non-coding RNA (lncRNA) HOTAIR occupies a central position in the complex domain of cancer biology, particularly concerning its intricate interplay with the Wnt/ß-catenin signaling pathway. This comprehensive review explores the multifaceted interactions between HOTAIR and the Wnt/ß-catenin cascade, elucidating their profound function in cancer growth, progression, and therapeutic strategies. The study commences by underscoring the pivotal role of the Wnt/ß-catenin cascade in governing essential cellular activities, emphasizing its dysregulation as a linchpin in cancer initiation and advancement. It introduces HOTAIR as a crucial regulatory entity, influencing gene expression in both healthy and diseased. The core of this review plunges into the intricacies of HOTAIR's engagement with Wnt/ß-catenin signaling. It unravels how HOTAIR, through epigenetic modifications and transcriptional control, exerts its influence over key pathway constituents, including ß-catenin, Wnt ligands, and target genes. This influence drives unchecked cancer cell growth, invasion, and metastasis. Furthermore, the review underscores the clinical significance of the HOTAIR-Wnt/ß-catenin interplay, elucidating its associations with diverse cancer subtypes, patient prognoses, and prospects as a therapy. It provides insights into ongoing research endeavors to develop HOTAIR-targeted treatments and initiatives to facilitate aberrant Wnt/ß-catenin activation. Concluding on a forward-looking note, the article accentuates the broader implications of HOTAIR's involvement in cancer biology, including its contributions to therapy resistance and metastatic dissemination. It underscores the importance of delving deeper into these intricate molecular relationships to pave the way for groundbreaking cancer treatment.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Processos Neoplásicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt/genética
14.
Pathol Res Pract ; 254: 155081, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211388

RESUMO

The genomic era has brought about a transformative shift in our comprehension of cancer, unveiling the intricate molecular landscape underlying disease development. Eye cancers (ECs), encompassing diverse malignancies affecting ocular tissues, pose distinctive challenges in diagnosis and management. Long non-coding RNAs (lncRNAs), an emerging category of non-coding RNAs, are pivotal actors in the genomic intricacies of eye cancers. LncRNAs have garnered recognition for their multifaceted roles in gene expression regulation and influence on many cellular processes. Many studies support that the lncRNAs have a role in developing various cancers. Recent investigations have pinpointed specific lncRNAs associated with ECs, including retinoblastoma and uveal melanoma. These lncRNAs exert control over critical pathways governing tumor initiation, progression, and metastasis, endowing them with the ability to function as evaluation, predictive, and therapeutic indicators. The article aims to synthesize the existing information concerning the functions of lncRNAs in ECs, elucidating their regulatory mechanisms and clinical significance. By delving into the lncRNAs' expanding relevance in the modulation of oncogenic and tumor-suppressive networks, we gain a deeper understanding of the molecular complexities intrinsic to these diseases. In our exploration of the genomic intricacies of ECs, lncRNAs introduce a fresh perspective, providing an opportunity to function as clinical and therapeutic indicators, and they also have therapeutic benefits that show promise for advancing the treatment of ECs. This comprehensive review bridges the intricate relationship between lncRNAs and ECs within the context of the genomic era.


Assuntos
RNA Longo não Codificante , Neoplasias da Retina , Retinoblastoma , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação da Expressão Gênica
15.
J Biomol Struct Dyn ; : 1-18, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407246

RESUMO

One of the viral diseases that affect millions of people around the world, particularly in developing countries, is Japanese encephalitis (JE). In this study, the conserved protein of this virus, that is, non-structural protein 5 (NS5), was used as a target protein for this study, and a compound library of 749 antiviral molecules was screened against NS5. The current study employed machine learning-based virtual screening combined with molecular docking. Here, three hits (24360, 123519051 and 213039) had lower binding energies (< -8 kcal/mol) than the control, S-Adenosyl-L-homocysteine (SAH). All the compounds showed significant H-bond interactions with functional residues, which were also observed by the control. Molecular dynamics simulation, MM/GBSA for binding free energy analysis, principal component analysis and free energy landscape were also performed to study the stability of the complex formation. All three compounds had similar root mean square deviation trends, which were comparable to the control, SAH. Post-MD, the 123519051-receptor complex had the highest number of H-bonds (4 to 5) after the control, out of which three exhibited the highest percentage occupancy (50%, 24% and 79%). Both docking and MD, 123519051 showed an H-bond with the residue Gly111, which was also found for the control-protein complex. 123519051 showed the lowest binding free energy with ΔGbind of -89 kJ/mol. Steered molecular dynamics depicted that 123519051 had the maximum magnitude of dissociation (1436.43 kJ/mol/nm), which was more than the control, validating its stable complex formation. This study concluded that 123519051 is a binder and could inhibit the protein NS5 of JE.Communicated by Ramaswamy H. Sarma.

16.
Int J Biol Macromol ; 262(Pt 2): 130146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365140

RESUMO

Integrin-linked kinase (ILK), a ß1-integrin cytoplasmic domain interacting protein, supports multi-protein complex formation. ILK-1 is involved in neurodegenerative diseases by promoting neuro-inflammation. On the other hand, its overexpression induces epithelial-mesenchymal transition (EMT), which is a major hallmark of cancer and activates various factors associated with a tumorigenic phenotype. Thus, ILK-1 is considered as an attractive therapeutic target. We investigated the binding affinity and ILK-1 inhibitory potential of noscapine (NP) using spectroscopic and docking approaches followed by enzyme inhibition activity. A strong binding affinity of NP was measured for the ILK-1 with estimated Ksv (M-1) values of 1.9 × 105, 3.6 × 105, and 4.0 × 105 and ∆G0 values (kcal/mol) -6.19554, -7.8557 and -8.51976 at 298 K, 303 K, and 305 K, respectively. NP binds to ILK-1 with a docking score of -6.6 kcal/mol and forms strong interactions with active-site pocket residues (Lys220, Arg323, and Asp339). The binding constant for the interaction of NP to ILK-1 was 1.04 × 105 M-1, suggesting strong affinity and excellent ILK-1 inhibitory potential (IC50 of ∼5.23µM). Conformational dynamics of ILK-1 were also studied in the presence of NP. We propose that NP presumably inhibits ILK-1-mediated phosphorylation of various downstream signalling pathways that are involved in cancer cell survival and neuroinflammation.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Noscapina , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
17.
J Biomol Struct Dyn ; : 1-12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234016

RESUMO

In the present study, the formation of a heterodimer involving both epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) has been explored as a potential therapeutic mechanism to inhibit the progression of breast cancer. Virtual screening using molecular docking resulted in the three hit compounds (ZINC08382411, ZINC08382438, and ZINC08382292) with minimum binding scores and commonly binding to both receptors. Further, MD simulation analysis of these complexes illustrated the high stability of these compounds with EGFR and HER2. RMSD showed that ZINC08382411 displayed the most stable RMSD of 2 - 3 Å when bound to both receptors, suggesting to have strong compatibility with the active site of the receptor. Hydrogen bond analysis showed that ZINC08382411 forms the maximum number of H-bonds (2 to 3) in both EGFR and HER2 bound complexes, with the highest occupancy of 62% and 79%, respectively. Binding free energy calculation showed that ZINC08382411 possesses maximum affinity towards both the receptors with ΔGbind = -129.628 and -164.063 kJ/mol, respectively. This approach recognizes the significance of EGFR and HER2 in breast cancer development and aims to disrupt their collaborative signaling, which is known to promote the antagonistic behavior of cancer cells. By focusing on this EGFR/HER2 heterodimer, the study offers a promising avenue for identifying a potential candidate (ZINC08382411) that may inhibit breast cancer cell growth and potentially improve patient outcomes. The study's findings may contribute to the ongoing efforts to advance breast cancer treatment strategies.Communicated by Ramaswamy H. Sarma.

18.
Int J Surg ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775499

RESUMO

BACKGROUND: Stem cell therapy offers promising benefits like modulating immune responses, reducing inflammation, and aiding liver regeneration. This umbrella review seeks to compile evidence from systematic reviews to assess the efficacy of stem cell therapy for improving liver function and survival rates in chronic liver disease patients. METHODS: We searched electronic databases up to February 15, 2024. The selection process focused on systematic reviews comparing stem cell therapy with standard care or a placebo. The primary outcomes evaluated were changes in liver enzymes, the MELD score, and survival rates. Nested Knowledge software was utilized for screening and data extraction. All statistical analyses were performed using R software, version 4.3. RESULTS: Our umbrella review included 28 systematic reviews. The meta-analysis showcased a notable improvement in survival rates with a pooled RR of 1.487 (95% CI: 1.281 to 1.727). In non-randomized studies, albumin levels exhibited an SMD of 0.786 (95% CI: 0.368 to 1.204), indicating positive therapeutic effects. For ALT, the meta-analysis revealed a decrease in levels with an SMD of -0.499 (95% CI: -0.834 to -0.164), and for AST, an overall SMD of -0.362 (95% CI: -0.659 to -0.066) was observed, suggesting hepatoprotective effects. No significant changes were observed in total bilirubin levels and MELD scores in RCTs. CONCLUSION: Stem cell therapy exhibits potential as a novel treatment for chronic liver diseases, as it has demonstrated improvements in survival rates and certain liver function markers. More high-quality RCTs are needed in the future to fully ascertain the efficacy of stem cell therapy in this patient population.

19.
Int J Surg ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967503

RESUMO

BACKGROUND: COVID-19 has presented significant obstacles to healthcare. Stem cell therapy, particularly mesenchymal stem cells (MSCs), has emerged as a potential treatment modality due to its immunomodulatory and regenerative properties. This umbrella review aims to synthesize current evidence from systematic reviews on the safety and efficacy of stem cell therapy in COVID-19 treatment. METHODS: A thorough literature search was performed across Embase, PubMed, Cochrane and Web of Science from December 2019 to February 2024. Systematic reviews focusing on the use of stem cell therapy for COVID-19 were included. Evidence was synthesized by meta-analysis using R software (V 4.3) for each outcome. The certainty of evidence was assessed using the GRADE approach. RESULTS: A total of 24 systematic reviews were included. Stem cell therapy was associated with reduced mortality (RR 0.72, 95% CI: 0.60-0.86); shorter hospital stays (MD -4.00 days, 95% CI: -4.68 to -3.32), and decreased need for invasive ventilation (RR 0.521, 95% CI: 0.320 to 0.847). Symptom remission rates improved (RR 1.151, 95% CI: 0.998 to 1.330), and a reduction in CRP levels was noted (SMD -1.198, 95% CI: -2.591 to 0.195), albeit with high heterogeneity. For adverse events, no significant differences were found between stem cell therapy and standard care (RR 0.87, 95% CI: 0.607 to 1.265). The certainty of evidence ranged from low to moderate. CONCLUSION: Stem cell therapy demonstrates a potential benefit in treating COVID-19, particularly in reducing mortality and hospital stay duration. Despite these promising findings, the evidence is varied, and future large-scale randomized trials are essential to confirm the efficacy and optimize the therapeutic protocols for stem cell therapy in the management of the disease. The safety profile is encouraging, with no significant increase in adverse events, suggesting a viable avenue for treatment expansion.

20.
Sci Rep ; 13(1): 20147, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978263

RESUMO

The signal transducer and activator of transcription 3 (STAT3) plays a fundamental role in the growth and regulation of cellular life. Activation and over-expression of STAT3 have been implicated in many cancers including solid blood tumors and other diseases such as liver fibrosis and rheumatoid arthritis. Therefore, STAT3 inhibitors are be coming a growing and interesting area of pharmacological research. Consequently, the aim of this study is to design novel inhibitors of STAT3-SH3 computationally for the reduction of liver fibrosis. Herein, we performed Pharmacophore-based virtual screening of databases including more than 19,481 commercially available compounds and in-house compounds. The hits obtained from virtual screening were further docked with the STAT3 receptor. The hits were further ranked on the basis of docking score and binding interaction with the active site of STAT3. ADMET properties of the screened compounds were calculated and filtered based on drug-likeness criteria. Finally, the top five drug-like hit compounds were selected and subjected to molecular dynamic simulation. The stability of each drug-like hit in complex with STAT3 was determined by computing their RMSD, RMSF, Rg, and DCCM analyses. Among all the compounds Sa32 revealed a good docking score, interactions, and stability during the entire simulation procedure. As compared to the Reference compound, the drug-like hit compound Sa32 showed good docking scores, interaction, stability, and binding energy. Therefore, we identified Sa32 as the best small molecule potent inhibitor for STAT3 that will be helpful in the future for the treatment of liver fibrosis.


Assuntos
Farmacóforo , Fator de Transcrição STAT3 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cirrose Hepática/tratamento farmacológico , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA