Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 202: 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428704

RESUMO

Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.


Assuntos
Flavanonas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Obesidade/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
2.
BMC Immunol ; 21(1): 28, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32429849

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease worldwide. Recent studies have shown that the Angptl2 pathway mediated hepatic inflammatory response plays an important role in the progression of nonalcoholic fatty liver disease. Our study investigated the possible molecular mechanisms of berberine (BBR) in the treatment of the liver inflammatory response in the livers of rats with high-fat diet-induced NAFLD via the Angptl2 pathway. RESULTS: At the end of 12 weeks, compared with the control group rats, the high-fat- diet group rats showed obvious pathological and biochemical changes. The levels of pro-infalmmatory cytokines (CCL2, TNF-α) were increased, the infiltration of inflammatory cells (CCR2) was elevated, and the hepatic mRNA and protein levels of Angptl2, NF-κB and Foxo1 were increased to different degrees. Nevertheless, following treatment with BBR, liver tissue pathology, biochemical data, and Angptl2 pathway-related genes expression were significantly ameliorated. CONCLUSIONS: Our findings demonstrate that BBR might attenuate the liver inflammatory response in the livers of rats with high-fat diet-induced NAFLD through the regulation of the Angptl2 pathway.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 2 Semelhante a Angiopoietina , Animais , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
3.
J Cell Physiol ; 234(7): 10827-10834, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30537251

RESUMO

OBJECTIVE: To explore the changes of Sonic Hedgehog (Shh) signaling pathway in the stomach mucosa during the formation of gastric precancerous lesions. METHODS: A total of 72 suckling rats in half genders were randomly and equally divided into the normal group and model group. The rats in the model group were administered with 0.1 ml 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) at the dosage of 800 mg/L for 10 days, whereas the rats in the normal group were similarly administered with normal saline. A total of 12 rats in each group were killed at the end of 10th, 22nd, and 34th weeks in half gender, respectively. Histopathological changes of the gastric mucosa were observed by hematoxylin and eosin (HE) staining; the levels of Shh, Ptch1, Smo, Gli1, Gli2, Gli3, SuFu, Cyclin D1, Cyclin E1, c-Myc, and ß-actin mRNAs in the gastric mucosa were determined by real-time polymerase chain reaction; while the protein expression of Shh, Ptch1, Smo, Gli1, SuFu, Cyclin D1, Cyclin E1, c-Myc, and p-c-Myc was detected by western blot analysis. RESULTS: With the development of atrophy and dysplasia of gastric mucosa, the levels of Shh, Smo, Gli1, Cyclin D1, Cyclin E1, and c-Myc mRNAs increased, while those of Ptch1 and SuFu decreased. The expression of Shh, Smo, Gli1, Cyclin D1, Cyclin E1, and p-c-Myc proteins were elevated, while the expression of Ptch1 and SuFu proteins were decreased, however, without statistical difference. CONCLUSIONS: Shh signaling is activated during the formation of gastric precancerous lesions, which indicates that the Shh signaling pathway participates in the development and progression of gastric precancerous lesions.


Assuntos
Mucosa Gástrica/metabolismo , Proteínas Hedgehog/metabolismo , Metilnitronitrosoguanidina , Lesões Pré-Cancerosas/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Atrofia , Modelos Animais de Doenças , Feminino , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Masculino , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/patologia , Fatores de Tempo
4.
BMC Immunol ; 18(1): 33, 2017 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-28646856

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a common, chronic liver disease worldwide. Recent studies have shown that T helper (Th) 17 and regulatory T (Treg) cells play critical roles in various disorders of liver inflammation. Here, we explored the value of polyene phosphatidylcholine capsules (PPC) for regulating the imbalance of Th17/Treg cells in the pathogenesis of mice with NAFLD. METHODS: C57BL/6 mice were randomly divided into three groups as follows:normal diet (ND), high-fat diet (HF),and HF plus PPC(HF + PPC). The frequencies of splenic Th17 and Treg cells were measured by flow cytometry, and their related cytokines were analyzed by CBA and real-time PCR. RESULTS: At the end of 24 weeks, mice in the HF group had a higher frequency of intrahepatic Th17 cells,and a lower proportion of Treg cells compared with the ND group. The levels of Th17 cell-related cytokines (IL-6, IL-17 and IL-23) in serum and in liver tisse were increased,and the hepatic mRNA levels of RORγt, STAT3 and IL-6 were also increased. By contrast,the FoxP3 mRNA level was decreased in the HF group. Moreover, significant pathological and biochemical changes in the liver, as well as serum biochemical changes, were found in mice with NAFLD. Interestingly, following treatment with PPC, the levels of liver inflammation,frequencies of Th17/Treg cells and associated cytokines,and biochemical data were significantly altered. CONCLUSION: These findings demonstrate a critical role for PPC in partially attenuating liver inflammatory responses in mice with NAFLD that involves the imbalance of Treg/Th17 cells and associated cytokines.


Assuntos
Inflamação/terapia , Hepatopatia Gordurosa não Alcoólica/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Cápsulas/uso terapêutico , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/terapia , Fosfatidilcolinas/uso terapêutico , Equilíbrio Th1-Th2
5.
Zhongguo Zhong Yao Za Zhi ; 40(13): 2644-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26697693

RESUMO

This study aimed to investigate the involved immunologic mechanism of pure total flavonoids from Citrus (PTFC) on the development of non-alcoholic steatohepatitis (NASH). C57BL/6 mice were fed with high .fat diet for 16 weeks to induce the NASH model, and from the 7th week three dosages (25, 50 and 100 mg x kg(-1) x d(-1)) of PTFC were administrated intragastric for 10 weeks respectively. Serum TG, CHOL, ALT, AST were determined by biochemical assay, histopathological changes of the liver tissue were observed by HE staining, expression of RORyt and Foxp3 mRNA of the liver tissue was detected by Real-time PCR, and serum IL-17, IL-6, IL-10 and IL-4 were determined by.Cytometric Beads Array. As a result, we find that after the administration of PTFC, the in- flammation of the liver tissue of NASH mice was attenuated, liver function was improved, and the expression of RORgammat mRNA was higher in the liver tissue while which was lower of Foxp3 mRNA, the level of proinflammatory cytokines IL-17 and IL-6 decreased and the level of suppressive cytokines IL-10 and IL-4 increased. These data show that PTFC protects the development of NASH through regulating the Th17/Treg balance and attenuating inflammation.


Assuntos
Citrus/química , Flavonoides/farmacologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Citocinas/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/imunologia
6.
Zhongguo Zhong Yao Za Zhi ; 40(9): 1808-11, 2015 May.
Artigo em Zh | MEDLINE | ID: mdl-26323153

RESUMO

To study the preventive effect of Grifola frondosa on nonalcoholic steatohepatitis (NASH). The rat model of NASH was established by feeding high-fat diets for 12 weeks and intervened with 0.5 g · kg(-1) · d(-1) and 1.0 g · kg(-1) · d(-1) of C. frondosa powder suspensions. The degrees of hepatocyte fatty degeneration and inflammation were observed under the optical microscope with routine HE staining. The NAFLD activity scores (NAS) were calculated. Serum ALT, AST and hepatic TG and CHOL were tested by the biochemical method. The hepatic MDA was examined by thiobarbituric acid method. The hepatic SOD was tested by the xanthine oxidase test. The hepatic GSH-PX activity was determined by the dithio-nitrobenzoic acid method. Hepatic TNF-α and IL-6 were detected by the enzyme-linked immunosorbent assay (ELISA). The NASH model group induced by high-fat diets showed higher hepatic NAS, ser- um ALT, AST, CHOL and hepatic TG, CHOL, MDA, TNF-α, IL-6 (P < 0.01 or P < 0.05) and lower serum TG and hepatic SOD, GSH-PX (P < 0.01, P < 0.05) than the normal control group. After being intervened with different doses of G. frondosa, the NASH group revealed significantly lower hepatic NAS, serum ALT and hepatic TG, CHOL, MDA, TNF-α and IL-6 (P < 0.05) and higher hepatic SOD, GSH-PX (P < 0.05) than the model group. G. frondosa may prevent the further development of NASH by improving the disorder of lipid metabolism in rats with NASH induced by high-fat diets, relieving the level of oxidative stress and reducing the generation of inflammatory cytokines.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Grifola/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Humanos , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 39(1): 100-5, 2014 Jan.
Artigo em Zh | MEDLINE | ID: mdl-24754177

RESUMO

OBJECTIVE: To observe the effect of pure total flavonoids from Citrus (PTFC) on the hepatic fatty degeneration, inflammation, oxidative stress and SIRT1/PGC-1alpha expressions in mice with non-alcohol steatohepatitis (NASH), and discuss the action mechanism of PTFC on NASH. METHOD: Mice were given high-fat diet for 16 weeks to induce the NASH model. Since the seventh week after the model establishment, the mice were intervened with 100, 50 and 25 mg x kg(-1) x d(-1) PTFC for 10 weeks. The pathologic changes in hepatic tissues were observed with HE staining. The contents of TG, CHOL in hepatic tissue, as well as the levels of AST, ALT in serum were detected by using the biochemical process. The expression of SIRT1, PGC-1alpha and MnSOD mRNA in hepatic tissues were detected with Real-time PCR assay. SIRT1, PGC-1alpha protein and 8-OHdG expressions were determined with the immunohistochemical method. The SOD level in hepatic tissues was tested by the xanthine oxidase method. The MDA content in hepatic tissues was examined by the thiobarbituric acid method. RESULT: The contents of TG, CHOL, NAFLD activity scores and ALT level in serum in hepatic tissues of mice in the model induced by fat-rich diet were obviously higher than that of the normal group (P < 0.010. The SIRT1, PGC-1alpha, MnSOD mRNA and protein expression in hepatic tissues were significantly lower than that of the normal group (P < 0.01). The expression of 8-OHdG and the content of MDA in hepatic tissues were obviously higher than that of the normal group (P < 0.01). After the intervention with different doses of PTFC, the NAFLD activity scores, the content of TG and the level of AST in serum were notably lower than that of the normal group (P < 0.01, P < 0.05); whereas the SIRT1, PGC-1alpha, MnSOD mRNA and protein expression were obviously higher than that of the normal group (P < 0.01, P < 0.05), with the significant decrease in the expression of 8-OHdG and the content of MDA (P < 0.01). CONCLUSION: Oxidative stress/lipid peroxidation enhancement in in NASH mice induced by high-fat diet may be related to the changes in SIRT1/PGC-1alpha signal transduction pathway. PTFC could enhance the anti-oxidant capacity in liver, relieve the damage of reactive oxygen during the fatty acid metabolic process, and prevent NASH from the occurrence and development by regulating the SIRT1/PGC-1alpha signal pathway.


Assuntos
Citrus/química , Fígado Gorduroso/tratamento farmacológico , Flavonoides/química , Flavonoides/farmacologia , Sirtuína 1/genética , Fatores de Transcrição/genética , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo
8.
Front Nutr ; 11: 1424246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946789

RESUMO

MAFLD has become a major global health problem and is the leading cause of liver disease worldwide. The disease progresses from a simple fatty liver to gradual fibrosis, which progresses to cirrhosis and even hepatocellular liver cancer. However, the methods currently used for diagnosis are invasive and do not facilitate clinical assessment of the condition. As a result, research on markers for the diagnosis of MAFLD is increasing. In addition, there are no clinical medications for the treatment of MAFLD, and lifestyle interventions remain effective in the prevention and treatment of MAFLD. In this review, we attempt to make a summary of the emerging diagnostic indicators and effective lifestyle interventions for MAFLD and to provide new insights into the diagnosis and treatment of MAFLD.

9.
Front Nutr ; 11: 1405033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015537

RESUMO

Cataract is a common eye disease characterized by lens opacity, leading to blurred vision and progressive blindness of the eye. Factors affecting the development of cataracts include nutrition, oxidative stress, micronutrients and inflammatory factors, and also include genetics, toxicity, infrared exposure, hyperuricemia, and mechanical injuries. Among the nutritional factors, a balanced diet, vegetarian diet, dairy products and vegetables are protective against cataracts; high-sodium diet, high intake of carbohydrates and polyunsaturated fatty acids may increase the risk of cataracts; and increased intake of proteins, especially animal proteins, may prevent nuclear cataracts. Intake of antioxidants such as ß-carotene, lutein, or zeaxanthin is associated with a reduced risk of cataracts. Minerals such as zinc, selenium, calcium and sodium have also been associated with cataract development. Oxidative stress plays an important role in the development of cataracts and is associated with several antioxidative enzymes and biomarkers such as glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Insulin resistance is also an essential risk factor for cataracts, especially in diabetic patients. In conclusion, understanding these influencing factors helps us to better prevent cataracts. And in this article, we will focus on the important factor of diet and nutrition for a detailed discussion.

10.
Front Nutr ; 11: 1344924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549744

RESUMO

Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has emerged as a significant global health concern, representing a major cause of liver disease worldwide. This condition spans a spectrum of histopathologic stages, beginning with simple fatty liver (MAFL), characterized by over 5% fat accumulation, and advancing to metabolic (dysfunction)-associated steatohepatitis, potentially leading to hepatocellular carcinoma. Despite extensive research, there remains a substantial gap in effective therapeutic interventions. This condition's progression is closely tied to micronutrient levels, crucial for biological functions like antioxidant activities and immune efficiency. The levels of these micronutrients exhibit considerable variability among individuals with MAFLD. Moreover, the extent of deficiency in these nutrients can vary significantly throughout the different stages of MAFLD, with disease progression potentially exacerbating these deficiencies. This review focuses on the role of micronutrients, particularly vitamins A, D, E, and minerals like iron, copper, selenium, and zinc, in MAFLD's pathophysiology. It highlights how alterations in the homeostasis of these micronutrients are intricately linked to the pathophysiological processes of MAFLD. Concurrently, this review endeavors to harness the existing evidence to propose novel therapeutic strategies targeting these vitamins and minerals in MAFLD management and offers new insights into disease mechanisms and treatment opportunities in MAFLD.

11.
J Ethnopharmacol ; 330: 118235, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648891

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragalus mongholicus Bunge (AM, recorded in http://www.worldfloraonline.org, 2023-08-03) is a kind of medicine food homology plant with a long medicinal history in China. Astragaloside III (AS-III) has immunomodulatory effects and is one of the most active components in AM. However, its underlying mechanism of action is still not fully explained. AIM OF THE STUDY: The research was designed to discuss the protective effects of AS-III on immunosuppression and to elucidate its prospective mechanism. MATERIALS AND METHODS: Molecular docking methods and network pharmacology analysis were used to comprehensively investigate potential targets and relative pathways for AS-III and immunosuppression. In order to study and verify the pharmacological activity and mechanism of AS-III in alleviating immunosuppression, immunosuppression mouse model induced by cyclophosphamide (CTX) in vivo and macrophage RAW264.7 cell model induced by hypoxia/lipopolysaccharide (LPS) in vitro were used. RESULTS: A total of 105 common targets were obtained from the AS-III-related and immunosuppression-related target networks. The results of network pharmacology and molecular docking demonstrate that AS-III may treat immunosuppression through by regulating glucose metabolism-related pathways such as regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, cGMP-PKG signaling pathway, central carbon metabolism in cancer together with HIF-1 pathway. The results of molecular docking showed that AS-III has good binding relationship with LDHA, AKT1 and HIF1A. In CTX-induced immunosuppressive mouse model, AS-III had a significant protective effect on the reduction of body weight, immune organ index and hematological indices. It can also protect immune organs from damage. In addition, AS-III could significantly improve the expression of key proteins involved in energy metabolism and serum inflammatory factors. To further validate the animal results, an initial inflammatory/immune response model of macrophage RAW264.7 cells was constructed through hypoxia and LPS. AS-III improved the immune function of macrophages, reduced the release of NO, TNF-α, IL-1ß, PDHK-1, LDH, lactate, HK, PK and GLUT-1, and restored the decrease of ATP caused by hypoxia. Besides, AS-III was also demonstrated that it could inhibit the increase of HIF-1α, PDHK-1 and LDH by adding inhibitors and agonists. CONCLUSIONS: In this study, the main targets of AS-III for immunosuppressive therapy were initially analyzed. AS-III was systematically confirmed to attenuates immunosuppressive state through the HIF-1α/PDHK-1 pathway. These findings offer an experimental foundation for the use of AS-III as a potential candidate for the treatment of immunosuppression.


Assuntos
Simulação de Acoplamento Molecular , Farmacologia em Rede , Saponinas , Animais , Camundongos , Células RAW 264.7 , Saponinas/farmacologia , Lipopolissacarídeos , Masculino , Ciclofosfamida/farmacologia , Imunossupressores/farmacologia , Triterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Astrágalo/química
12.
Front Nutr ; 10: 1301129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099180

RESUMO

Prediabetes is an intermediate stage in the development of type 2 diabetes mellitus characterized by impaired fasting glucose and/or impaired glucose tolerance. Prediabetes generally has no obvious clinical symptoms, and most patients are found in health examinations or due to other diseases. Reactive hypoglycemia may indicate the possibility of early diabetes. Without effective preventive measures, prediabetes can progress to diabetes leading to serious public health problems. Therefore, early diagnosis and intervention are important. Many animal experiments and clinical trials have proven that natural compounds substantially improve glucose metabolism disorder. The active ingredients are mainly alkaloids, polysaccharides, saponins, terpenoids, flavonoids and polyphenols. Their mechanism of action mainly involves improved insulin sensitivity and insulin resistance, inhibited activity of alpha-glucosidase, antioxidant activity, anti-inflammatory, regulation of gut microbiota and activating of peroxisome proliferator-activated receptor-γ. This paper reviews the mechanisms of action of natural compounds on prediabetes and the status of related research.

13.
Anat Rec (Hoboken) ; 306(12): 3169-3177, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36484169

RESUMO

BACKGROUND AND AIM: Nonalcoholic steatohepatitis (NASH) is a critical stage in the prognosis of nonalcoholic fatty liver disease (NAFLD). Pure total flavonoids from circus (PTFC) play essential roles in the improvement of NASH symptoms, but the underlying regulatory mechanism remains elusive. Our previous high-throughput omics screening results indicate that the CCL2/CCR2-PI3K-Akt signaling pathway is a key pathway that regulates the liver inflammatory response. PTFC may regulate the CCL2/CCR2-PI3K-Akt signaling pathway to improve the liver inflammatory response. METHODS: A mice model of NASH was established by a high-fat diet, and PTFC was used as treatment. Hematoxylin-eosin and oil red O staining were used to observe the pathological changes in the liver tissue. Western blotting and real-time PCR were used to measure the mRNA and protein levels in the liver. The expression of proinflammatory cytokines in the peripheral blood and liver tissues was measured by liquid suspension array. An automatic biochemical method was used to examine serum transaminases and lipids levels, as well as liver lipids. RESULTS: Compared with the mice in the high-fat diet group, mice in the HFD + PTFC group showed significantly improved liver histopathology, and levels of serum transaminase and lipids, liver lipids and serum proinflammatory cytokines. Moreover, the mRNA and protein expression and phosphorylation levels of key signaling molecules in the CCL2/CCR2-PI3K-Akt signal transduction pathway were obviously reduced by PTFC treatment. CONCLUSIVE REMARKS: PTFC can ameliorate NASH symptoms, and the mechanism may be related to regulating the CCL2/CCR2-PI3K-Akt signal transduction pathway to reduce the liver inflammatory response.


Assuntos
Citrus , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Citrus/química , Citrus/metabolismo , Fígado/metabolismo , Transdução de Sinais/fisiologia , RNA Mensageiro/metabolismo , Citocinas/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL
14.
Front Pharmacol ; 13: 1005312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188561

RESUMO

The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly worldwide; however, there are currently limited treatments for NAFLD. The disease spectrum includes simple fatty liver, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and progression to hepatocellular carcinoma (NASH-HCC). The therapeutic effects of NAFLD remain controversial. Although researchers have conducted studies on the pathogenesis of NAFLD, its pathogenesis and anti-NAFLD mechanisms have not been fully elucidated. Previous studies have found that flavonoids, as natural substances with extensive pharmacological activity and good therapeutic effects, have excellent antioxidant, anti-inflammatory, metabolic disease improvement, anti-tumor, and other properties and can significantly alleviate NAFLD. Flavonoids could be further developed as therapeutic drugs for NAFLD. In this paper, the pathogenesis of NAFLD and the mechanisms of flavonoids against NAFLD are summarized to provide a theoretical basis for screening flavonoids against non-alcoholic liver injury.

15.
Front Cell Infect Microbiol ; 12: 824597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35531334

RESUMO

Aim: To investigate the treating effect of Yiqi-Bushen-Tiaozhi (YBT) recipe on nonalcoholic steatohepatitis (NASH) mice, determine whether the outcome was associated with gut microbiota, and clarify the regulating mechanism. Methods: NASH mice were induced by high-fat and high-fructose diets (HFFD). In the fifth week, mice in the YBT group were orally administrated YBT (22.12g·kg-1·d-1) daily for 12 weeks. Fresh stool of mice was collected at the 16th week for fecal 16S rDNA analysis. Hepatic pathology and biochemical indicators were used to reflect the improvement of YBT on hepatic inflammation and lipid metabolism in NASH mice. Quantitative real-time PCR (qRT-PCR) was used to verify the results of PICRUSt analysis. Results: Results of the pathological and biochemical index showed that YBT could improve NASH mice. Compared with improving inflammation and hepatocyte damage, YBT may be more focused on enhancing metabolic disorders in mice, such as increasing HDL-c level. The diversity and richness of the gut microbiota of NASH mice induced by HFFD are significantly different from the normal control (NC) group. After YBT treatment, the diversity and richness of the mice microbiota will be increased to similar NC mice. Intestinimonas, Acetatifactor, Alistipes, Intestinimonas, Acetatifactor, and Alistipes have the most significant changes in the class level. PICRUSt analysis was performed to predict genomic functions based on the 16S rDNA results and reference sequencing. The efficacy of YBT in the treatment of NASH can be achieved by regulating the diversity and richness of gut microbiota. PICRUSt analysis results showed that the most relevant function of the microbiota construction variations is α- Linolenic acid (ALA) metabolism. Results of qRT-PCR showed significant differences between groups in the expression of Fatty acid desaturase 1 (FADS1), Fatty acid desaturase 2 (FADS2), Acyl-CoA Oxidase 1 (ACOX1), and Acyl-CoA Oxidase 2 (ACOX2) related to ALA metabolism. The expression of the above genes will be inhibited in the liver and small intestine of the HFFD group mice, and the expression can be restored after YBT treatment. Conclusion: YBT could treat NASH mice by improving the diversity and richness of gut microbiota and further the improvement of ALA metabolism.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Acil-CoA Oxidase/metabolismo , Animais , DNA Ribossômico , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Ácidos Graxos Dessaturases , Frutose/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
16.
J Immunol Res ; 2022: 6588144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733920

RESUMO

Shenqi pill (SQP), a famous traditional Chinese medicine (TCM) herbal formula derived from Jinguiyaolue (Synopsis of Prescriptions of the Golden Chamber), has long been used to treat kidney yang deficiency syndrome. According to the TCM treatment principle that the liver and kidney are homologies, the clinical use of SQP in the treatment of nonalcoholic steatohepatitis (NASH) has achieved a good effect. However, the active targeted genes and underlying mechanism remain unclear. In this study, we aimed to explore the treatment mechanism of SQP in NASH rats, which may further contribute to the in-depth exploration of SQP in clinical applications. Network pharmacology analysis was used to screen the target genes of SQP for NASH treatment based on public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis were used to search for crucial target genes and mechanisms. UPLC-MS/MS was used to verify the active compounds of the SQP screened. The hepatic pathology and biochemical indicators of rats were used to judge the modeling results and the curative effect of SQP. Western blotting and qRT-PCR were used to verify the expression of crucial target genes at the protein and RNA levels, respectively. Network pharmacology analysis and bioinformatics analysis showed that PTGS2, JUN, MYC, and CDKN1A might be crucial target genes in the primary mechanism of SQP in treating NASH and improving the inflammatory response. The UPLC-MS/MS results confirmed that the hub active compound, quercetin, screened out through the TCMSP database, is indeed present in SQP. Hepatic injury and lipid metabolism indicators of NASH rats were significantly improved after SQP treatment. The results of WB and qRT-PCR showed that the expression of PTGS2, JUN, MYC, and CDKN1A was higher in NASH rats than in normal rats and decreased after SQP treatment. The expression of inflammatory cytokines (IL-1ß, IL-6, TNF-α) was reduced after SQP treatment, which confirmed that SQP could improve hepatic inflammation in rats. These results suggested that SQP could ameliorate NASH in rats, and that quercetin may be the critical active compound that exerts the therapeutic effect.


Assuntos
Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Animais , Cromatografia Líquida , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Farmacologia em Rede , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Quercetina , Ratos , Espectrometria de Massas em Tandem
17.
Front Nutr ; 9: 1052504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698464

RESUMO

Rubus chingii Hu (Chinese Raspberry), known as Fu-Pen-Zi in Chinese, a woody perennial plant of the genus Rubus in the Rosaceae family, has specific nutritional and medicinal values, which is considered food-medicine herb in China for thousands of years to treat impotence, premature ejaculation, enuresis, frequent urination, and other diseases. This review aims to summarize recent advances in the bioactive components, pharmacological effects, and drug development and utilization of Rubus chingii Hu, hoping to provide useful support for its further research and clinical application. The bioactive components in Rubus chingii Hu contain mainly terpenoids, flavonoids, alkaloids, phenolic acids, polysaccharides, and steroids. The main pharmacological effects are their anti-oxidant, anti-inflammatory, and anti-tumor capacity on human health. Rubus chingii Hu is a very valuable food-medicine herb. The development of Rubus chingii Hu-related drugs is relatively single, which is limited to traditional Chinese medicine and prescriptions. Therefore, it is vital to pay interest to Rubus chingii Hu and its bioactive components in the future and extend its scientific application.

18.
Exp Biol Med (Maywood) ; 247(3): 263-275, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775841

RESUMO

Nonalcoholic fatty liver disease (NAFLD) develops rapidly in high-fat diet (HFD) fed Mongolian gerbil (Meriones unguiculatus). Here, we aim to explore the gene expression characteristics of Mongolian gerbil to better understand the underlying mechanism in this animal model. Mongolian gerbils were fed with normal diet or HFD for different periods. High-throughput sequencing was carried out on the hepatic mRNA and bioinformatics analysis was further performed. Eight hub genes Cd44, App, Cdc42, Cd68, Cxcr4, Csf1r, Adgre1, and Fermt3, which were involved in inflammation, fibrosis, and HCC were obtained. Four significant independent poor prognostic factors for HCC (GPC1, ARPC1B, DAB2, and CFL1) were screened out. qRT-PCR result showed that the above genes expressed high levels in different periods of modeling process. The findings of this study provide useful information for further studies on Mongolian gerbil NAFLD model.


Assuntos
Hepatopatia Gordurosa não Alcoólica/etiologia , Transcriptoma , Animais , Carcinoma Hepatocelular/genética , Biologia Computacional/métodos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Gerbillinae , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia , Prognóstico , Mapas de Interação de Proteínas/genética
19.
Front Pharmacol ; 12: 694475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290612

RESUMO

Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.

20.
J Immunol Res ; 2021: 7183136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485536

RESUMO

The intestinal mucosal immune barrier protects the host from the invasion of foreign pathogenic microorganisms. Immune cells and cytokines in the intestinal mucosa maintain local and systemic homeostasis by participating in natural and adaptive immunity. Deficiency of the intestinal mucosal immune barrier is associated with a variety of intestinal illnesses. Exosomes are phospholipid bilayer nanovesicles that allow cell-cell communication by secreting physiologically active substances including proteins, lipids, transcription factors, mRNAs, micro-RNAs (miRNAs), and long noncoding RNAs (lncRNAs). Exosomal lncRNAs are involved in immune cell differentiation and the modulation of the immune response. This review briefly introduces the potential role of exosomal lncRNAs in the intestinal mucosal immune barrier and discusses their relevance to intestinal illnesses.


Assuntos
Exossomos/metabolismo , Imunidade nas Mucosas/genética , Enteropatias/imunologia , Mucosa Intestinal/imunologia , RNA Longo não Codificante/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Humanos , Enteropatias/diagnóstico , Enteropatias/genética , Enteropatias/patologia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA