Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2314349121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442174

RESUMO

Thrombosis, induced by abnormal coagulation or fibrinolytic systems, is the most common pathology associated with many life-threatening cardio-cerebrovascular diseases. However, first-line anticoagulant drugs suffer from rapid drug elimination and risk of hemorrhagic complications. Here, we developed an in situ formed depot of elastin-like polypeptide (ELP)-hirudin fusion protein with a prodrug-like feature for long-term antithrombotic therapy. Highly secretory expression of the fusion protein was achieved with the assistance of the Ffu312 tag. Integration of hirudin, ELP, and responsive moiety can customize fusion proteins with properties of adjustable in vivo retention and controllable recovery of drug bioactivity. After subcutaneous injection, the fusion protein can form a reservoir through temperature-induced coacervation of ELP and slowly diffuse into the blood circulation. The biological activity of hirudin is shielded due to the N-terminal modification, while the activated key proteases upon thrombus occurrence trigger the cleavage of fusion protein together with the release of hirudin, which has antithrombotic activity to counteract thrombosis. We substantiated that the optimized fusion protein produced long-term antithrombotic effects without the risk of bleeding in multiple animal thrombosis models.


Assuntos
Polipeptídeos Semelhantes à Elastina , Trombose , Animais , Fibrinolíticos/farmacologia , Hirudinas/genética , Hirudinas/farmacologia , Anticoagulantes , Trombose/tratamento farmacológico , Trombose/prevenção & controle
2.
Small ; 19(3): e2206270, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464498

RESUMO

Microneedle (MN) patches hold demonstrated prospects in intelligent wound management. Herein, inspired by the highly folded structure of insect wings, a three-dimensional (3D) origami MN patch with superfine miniature needle structures, microfluidic channels, and multiple functions was reported to detect biomarkers, release drugs controllably and monitor motions to facilitate wound healing. By simply replicating the pre-stretched silicone rubber (Ecoflex) molds patterned by a laser engraving machine, the superfine structure MN patch with microfluidic channels was obtained from the restored molds. The bioinspired origami structure endows the MN patch with a high degree of functional integration, including microfluidic channels and electrocircuits. The microfluidic channels combined with the pH value and glucose concentration indicators enable the patch with the capability of biomarker sensing detection. Porous structures, a temperature-responsive hydrogel, and a photothermal-sensitive agent are utilized to form a controllable drug release system on the MN patch. Meanwhile, MXene electrocircuits were printed on the MN patch for motion sensing. In addition, the ability of the MN patch to accelerate wound healing was demonstrated by a mouse model experiment with full-thickness skin wounds. These results indicate that the multifunctional 3D origami MN patch is a valuable intelligent strategy for wound management.


Assuntos
Microfluídica , Cicatrização , Camundongos , Animais , Hidrogéis/química , Luz , Agulhas
3.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894864

RESUMO

Charge variants, as an important quality attribute of mAbs, must be comprehensively characterized and monitored during development. However, due to their complex structure, the characterization of charge variants is challenging, labor-intensive, and time-consuming when using traditional approaches. This work combines on-line and off-line 2D-LC-MS to comprehensively characterize mAb charge variants and quickly offer precise instructions for process development. Six charge variant peaks of mAb 1 were identified using the developed platform. Off-line 2D-LC-MS analysis at the peptide level showed that the acidic peak P1 and the basic peaks P4 and P5 were caused by the deamidation of asparagine, the oxidation of methionine, and incomplete C-terminal K loss, respectively. On-line 2D-LC-MS at the intact protein level was used to identify the root causes, and it was found that the acidic peak P2 and the basic peak P6 were due to the glutathionylation of cysteine and succinimidation of aspartic acid, respectively, which were not found in off-line 2D-LC-MS because of the loss occurring during pre-treatment. These results suggest that process development could focus on cell culture for adjustment of glutathionylation. In this paper, we propose the concept of precision process development based on on-line 2D-LC-MS, which could quickly offer useful data with only 0.6 mg mAb within 6 h for precise instructions for process development. Overall, the combination of on-line and off-line 2D-LC-MS can characterize mAb charge variants more comprehensively, precisely, and quickly than other approaches. This is a very effective platform with routine operations that provides precise instructions for process development within hours, and will help to accelerate the development of innovative therapeutics.


Assuntos
Anticorpos Monoclonais , Peptídeos , Anticorpos Monoclonais/química , Cromatografia Líquida , Espectrometria de Massas/métodos
4.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511315

RESUMO

2'-fucosyllactose (2'FL) is an important nutrient in human milk that stimulates beneficial microbiota and prevents infection. α-L-fucosidase is a promising component for 2'FL synthesis. In this study, a soil-oriented α-L-fucosidase-producing strain from Enterococcus gallinarum ZS1 was isolated. Escherichia coli was employed as a host for cloning and expressing the α-L-fucosidase gene (entfuc). The EntFuc was predicted as a member of the GH29 family with a molecular mass of 58 kDa. The optimal pH and temperature for the activity of EntFuc were pH 7.0 and 30 °C, respectively. The enzyme exhibited a strictly specific activity for 4-Nitrophenyl-α-L-fucopyranoside (pNP-Fuc) and had a negligible effect on hydrolyzing 2'FL. EntFuc could catalyze the synthesis of 2'FL via transfucosylation action from pNP-Fuc and lactose. The yield of 2'FL reached 35% under optimal conditions. This study indicated that EntFuc with a high conversion rate is a promising enzyme source for the biosynthesis of 2'FL.


Assuntos
Oligossacarídeos , alfa-L-Fucosidase , Humanos , alfa-L-Fucosidase/genética , Trissacarídeos , Leite Humano/química , Escherichia coli
5.
J Biol Chem ; 297(5): 101262, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600889

RESUMO

Xylanases produce xylooligosaccharides from xylan and have thus attracted increasing attention for their usefulness in industrial applications. Previously, we demonstrated that the GH11 xylanase XynLC9 from Bacillus subtilis formed xylobiose and xylotriose as the major products with negligible production of xylose when digesting corncob-extracted xylan. Here, we aimed to improve the catalytic performance of XynLC9 via protein engineering. Based on the sequence and structural comparisons of XynLC9 with the xylanases Xyn2 from Trichoderma reesei and Xyn11A from Thermobifida fusca, we identified the N-terminal residues 5-YWQN-8 in XynLC9 as engineering hotspots and subjected this sequence to site saturation and iterative mutagenesis. The mutants W6F/Q7H and N8Y possessed a 2.6- and 1.8-fold higher catalytic activity than XynLC9, respectively, and both mutants were also more thermostable. Kinetic measurements suggested that W6F/Q7H and N8Y had lower substrate affinity, but a higher turnover rate (kcat), which resulted in increased catalytic efficiency than WT XynLC9. Furthermore, the W6F/Q7H mutant displayed a 160% increase in the yield of xylooligosaccharides from corncob-extracted xylan. Molecular dynamics simulations revealed that the W6F/Q7H and N8Y mutations led to an enlarged volume and surface area of the active site cleft, which provided more space for substrate entry and product release and thus accelerated the catalytic activity of the enzyme. The molecular evolution approach adopted in this study provides the design of a library of sequences that captures functional diversity in a limited number of protein variants.


Assuntos
Substituição de Aminoácidos , Bacillus subtilis , Proteínas de Bactérias , Endo-1,4-beta-Xilanases , Mutação de Sentido Incorreto , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética
6.
Biotechnol Bioeng ; 119(8): 2105-2114, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438195

RESUMO

EG5C-1, processive endoglucanase from Bacillus subtilis, is a typical bifunctional cellulase with endoglucanase and exoglucanase activities. The engineering of processive endoglucanase focuses on the catalytic pocket or carbohydrate-binding module tailoring based on sequence/structure information. Herein, a computational strategy was applied to identify the desired mutants in the enzyme molecule by evolutionary-coupling analysis; subsequently, four residue pairs were selected as evolutionary mutational hotspots. Based on iterative-saturation mutagenesis and subsequent enzymatic activity analysis, a superior mutant K51T/L93T has been identified away from the active center. This variant had increased specific activity from 4170 U/µmol of wild-type (WT) to 5678 U/µmol towards carboxymethyl cellulose-Na and an increase towards the substrate Avicel from 320 U/µmol in WT to 521 U/µmol. In addition, kinetic measurements suggested that superior mutant K51T/L93T had a high substrate affinity (Km ) and a remarkable improvement in catalytic efficiency (kcat /Km ). Furthermore, molecular dynamics simulations revealed that the K51T/L93T mutation altered the spatial conformation at the active site cleft, enhancing the interaction frequency between active site residues and substrate, and improving catalytic efficiency and substrate affinity. The current studies provided some perspectives on the effects of distal residue substitution, which might assist in the engineering of processive endoglucanase or other glycoside hydrolases.


Assuntos
Celulase , Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Domínio Catalítico , Celulase/química , Celulose/metabolismo
7.
Anal Chem ; 93(11): 4687-4696, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33715353

RESUMO

Intelligent wound patches have the potential properties of ultra-adhesion, self-healing ability, biosensing, antibacterial, anti-inflammatory, etc. In situ sensing (biosensing and monitoring) and intelligent drug delivery deserve more exploration, and new strategies of these two factors are of great importance. In this Feature, a comprehensive set of the progress in the area of intelligent wound patches, especially those based on multiple biosensing and electronics, and their potentials in drug release is deliberated. In addition, the major challenges in this field and opinions on its future developments are portrayed.


Assuntos
Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos , Eletrônica
8.
Biochem Biophys Res Commun ; 546: 111-117, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33582553

RESUMO

Lipase immobilization with hydrophobic interaction is of interesting exploration, and some functionalized groups on supports are special for activity increasing. To achieved a good performance of cost-effective immobilization on macro-supports for feasible usage and recycle, eco-friendly PLA-based 3D printing macro-scaffolds with fabrication was designed, and phenyl groups with different length of linkers and combined two kinds of groups were anchored for lipase YCJ01 binding with improving payload, the highest enzyme expression of 2227.5 U/g, activity recovery of 137.3%, and increasing specific activity of 815.9 U/mg were attained by using PLA@AMTS-C7-Ph/PLA@AMTS-C9-Ph scaffolds as carries. The immobilized lipase YCJ01 on bifunctionalized 3D printing scaffolds was further applied to the efficient resolution of racemic 1-indanol (267 mM) with high stereoselectivity using a binary solvent system. The immobilized lipase YCJ01 could control the over transesterification of (S)-1-indanol and exhibit good operational stability of repetitive usage for 9 cycles. This is beneficial to obtain the high enantiomerical pure product by feasible separation of immobilized biocatalyst without rigorous operation.


Assuntos
Enzimas Imobilizadas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Indanos/química , Indanos/isolamento & purificação , Lipase/metabolismo , Impressão Tridimensional , Burkholderia/enzimologia , Reutilização de Equipamento , Solventes/química , Estereoisomerismo
9.
Analyst ; 146(19): 5934-5941, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570843

RESUMO

The rapid fabrication of artificial skin patches with multiple functions has attracted great attention in various research fields, such as personal health monitoring, tissue engineering and robotics. Intertwined-network structures (blood vessel, lymphatic and nerve networks) play a key role in endowing skin with multiple functions. Thus, considerable efforts have been devoted to fabricating artificial skin patches with mimetic internal channels. Here, we present a one-step 3D printed intelligent silk fibroin artificial skin (i-skin) with built-in electronics and microfluidics. By simultaneously extruding functional materials in polyurethane-silk fibroin precursor using a 3D bioprinter, the i-skin and its internal channels can be fabricated within one step. Photonic crystals (PCs) were integrated into the microfluidic channel, enabling the i-skin to sense multiple biomarkers. Moreover, the printed electronics give the i-skin remarkable conductivity, endowing the i-skin with the capability of sensitive motion sensing. Notably, by using the built-in electronics and PC-integrated microfluidics, sensitive sensing of motions and specific cardiac biomarkers can be achieved simultaneously in the i-skin, indicating the remarkable prospects of the printed multi-functional i-skin in health care-related biomedical fields.


Assuntos
Fibroínas , Pele Artificial , Eletrônica , Microfluídica , Impressão Tridimensional , Seda
10.
Analyst ; 146(5): 1552-1558, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33475623

RESUMO

Wearable sensors play a key role in point-of-care testing (POCT) for their flexible and integration capability for sensitive physiological and biochemical sensing. Here, we present a multifunction wearable silk patch with both electronic channels and microchannels by utilizing matrix-assisted sacrificial 3D printing methods. Owing to the unique properties of a composite silk film (polyvinyl alcohol (PVA) and silk fibroin (SF)), the wearable sensors possess excellent tensile properties, self-healing ability and biocompatibility. Multi-layer channel (microfluidics and microcircuit)-integrated silk wearable sensors were then fabricated for simultaneous sensitive sensing of human cancer markers (carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP)) and motion monitoring. These features of the silk wearable sensors indicate their potential value for sensitive sensing, which will enable them to find broader applications in many fields in POCT, artificial skin and organ-on-a-chip systems.


Assuntos
Seda , Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Movimento (Física) , Impressão Tridimensional
11.
Analyst ; 145(16): 5388-5399, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32700700

RESUMO

Paper devices have attracted great attention for their rapid development in multiple fields, such as life sciences, biochemistry, and materials science. When manufacturing paper chips, flexible materials, such as cellulose paper or other porous flexible membranes, can offer several advantages in terms of their flexibility, lightweight, low cost, safety and wearability. However, traditional cellulose paper sheets with chaotic cellulose fiber constitutions do not have special structures and optical characteristics, leading to poor repeatability and low sensitivity during biochemical sensing, limiting their wide application. Recent evidence showed that the addition of ordered structure provides a promising method for manufacturing intelligent flexible devices, making traditional flexible devices with multiple functions (microfluidics, motion detection and optical display). There is an urgent need for an overall summary of the evolution of paper devices so that readers can fully understand the field. Hence, in this review, we summarized the latest developments in intelligent paper devices, starting with the fabrication of paper and smart flexible paper devices, in the fields of biology, chemistry, electronics, etc. First, we outlined the manufacturing methods and applications of both traditional cellulose paper devices and modern smart devices based on pseudopaper (order paper). Then, considering different materials, such as cellulose, nitrocellulose, nature sourced photonic crystals (photonic crystals sourced from nature directly) and artificial photonic crystals, we summarized a new type of smart flexible device containing an ordered structure. Next, the applications of paper devices in biochemical sensing, wearable sensing, and cross-scale sensing were discussed. Finally, we summarized the development direction of this field. The aim of this review is to take an integral cognition approach to the development of smart flexible paper devices in multiple fields and promote communications between materials science, biology, chemistry and electrical science.


Assuntos
Dispositivos Eletrônicos Vestíveis , Celulose , Eletricidade , Eletrônica , Porosidade
12.
Bioorg Chem ; 99: 103765, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213361

RESUMO

A penicillin G acylase (PGA) from Achromobacter xylosoxidans PX02 was newly isolated, and site-directed mutagenesis at three important positions αR141, αF142, ßF24 was carried out for improving the enzymatic synthesis of ß-lactam antibiotics. The efficient mutant ßF24A was selected, and the (Ps/Ph)ini (ratio between the initial rate of synthesis and hydrolysis of the activated acyl donor) dramatically increased from 1.42-1.50 to 23.8-24.1 by means of the optimization of reaction conditions. Interestingly, the efficient enzymatic synthesis of ampicillin (99.1% conversion) and amoxicillin (98.7% conversion) from a high concentration (600 mM) of substrate 6-APA in the low acyl donor/nucleus ratio (1.1:1) resulted in a large amount of products precipitation from aqueous reaction solution. Meanwhile, the by-product D-phenylglycine was hardly precipitated, and 93.5% yield of precipitated ampicillin (561 mM) and 94.6% yield of precipitated amoxicillin (568 mM) were achieved with high purity (99%), which significantly simplified the downstream purification. This was the first study to achieve efficient ß-lactam antibiotics synthesis process with in situ product removal, with barely any by-product formation. The effect enzymatic synthesis of antibiotics in aqueous reaction solution with in situ product removal provides a promising model for the industrial semi-synthesis of ß-lactam antibiotics.


Assuntos
Achromobacter denitrificans/enzimologia , Antibacterianos/biossíntese , Penicilina Amidase/metabolismo , beta-Lactamas/metabolismo , Antibacterianos/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Penicilina Amidase/genética , Penicilina Amidase/isolamento & purificação , Solubilidade , beta-Lactamas/química
13.
Analyst ; 144(22): 6497-6511, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31588934

RESUMO

Paper has unique advantages over other materials, including low cost, flexibility, porosity, and self-driven liquid pumping, thus making it widely used in various fields in biology, chemistry, physics and materials science. Recently, many multifunctional and highly integrated membrane-based devices have been achieved with the rapid development of membrane-building materials such as paper and pseudo-paper. Therefore, the rigid boundary between paper and other membranes has become blurred; paper can be considered a flexible membrane, and membranes with appropriately flexible or porous structures can also be defined as paper. Paper can manipulate liquids and respond photoelectrically to external objects to be measured, making it suitable for (bio)chemical sensing (chromatographic analysis, electrochemical analysis and wearable sensing). This review focuses on the development of microfluidic devices built with both traditional paper and other flexible membranes, including fabrication, (bio)chemical sensing, microfluidics manipulation and multiple applications.

14.
Molecules ; 25(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888088

RESUMO

Purine nucleoside phosphorylases (PNPs) are promising biocatalysts for the synthesis of purine nucleoside analogs. Although a number of PNPs have been reported, the development of highly efficient enzymes for industrial applications is still in high demand. Herein, a new trimeric purine nucleoside phosphorylase (AmPNP) from Aneurinibacillus migulanus AM007 was cloned and heterologously expressed in Escherichia coli BL21(DE3). The AmPNP showed good thermostability and a broad range of pH stability. The enzyme was thermostable below 55 °C for 12 h (retaining nearly 100% of its initial activity), and retained nearly 100% of the initial activity in alkaline buffer systems (pH 7.0-9.0) at 60 °C for 2 h. Then, a one-pot, two-enzyme mode of transglycosylation reaction was successfully constructed by combining pyrimidine nucleoside phosphorylase (BbPyNP) derived from Brevibacillus borstelensis LK01 and AmPNP for the production of purine nucleoside analogs. Conversions of 2,6-diaminopurine ribonucleoside (1), 2-amino-6-chloropurine ribonucleoside (2), and 6-thioguanine ribonucleoside (3) synthesized still reached >90% on the higher concentrations of substrates (pentofuranosyl donor: purine base; 20:10 mM) with a low enzyme ratio of BbPyNP: AmPNP (2:20 µg/mL). Thus, the new trimeric AmPNP is a promising biocatalyst for industrial production of purine nucleoside analogs.


Assuntos
Bacillales/enzimologia , Nucleosídeos de Purina/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Bacillales/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Clonagem Molecular , Estabilidade Enzimática , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/genética , Pirimidina Fosforilases/metabolismo , Termodinâmica
16.
Org Biomol Chem ; 16(14): 2464-2469, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29561022

RESUMO

The 62nd residue of glycosyltransferase UGTBL1 was identified as a "hotspot" for glycosylation at 3-OH of resveratrol. Via semi-rational design including structure-guided alanine scanning and saturation mutations, the mutation I62G significantly switched the regioselectivity from 4'-OH to 3-OH of resveratrol and mainly produced polydatin (87.7%), a therapeutic natural product.


Assuntos
Proteínas de Bactérias/química , Glucosídeos/síntese química , Glucosiltransferases/química , Engenharia de Proteínas/métodos , Estilbenos/síntese química , Bacillus licheniformis/enzimologia , Proteínas de Bactérias/genética , Glucosiltransferases/genética , Glicosilação , Cinética , Mutação , Resveratrol/química
17.
Appl Microbiol Biotechnol ; 102(4): 1749-1758, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29306966

RESUMO

Penicillin G acylase (PGA) was isolated from Providencia rettgeri PX04 (PrPGApx04) and utilized for the kinetically controlled synthesis of ß-lactam antibiotics. Site-directed mutagenesis was performed to increase the process efficiency. Molecular docking was carried out to speculate the key mutant positions corresponding with synthetic activity, which resulted in the achievement of an efficient mutant, ßF24G. It yielded higher conversions than the wild-type enzyme in the synthesis of amoxicillin (95 versus 17.2%) and cefadroxil (95.4 versus 43.2%). The reaction time for achieving the maximum conversion decreased from 14 to 16 h to 2-2.5 h. Furthermore, the secondary hydrolysis of produced antibiotics was hardly observed. Kinetic analysis showed that the (kcat/Km)AD value for the activated acyl donor D-hydroxyphenylglycine methyl ester (D-HPGME) increased up to 41 times. In contrast, the (kcat/Km)Ps values for the products amoxicillin and cefadroxil decreased 6.5 and 21 times, respectively. Consequently, the α value (kcat/Km)Ps/(kcat/Km)AD, which reflected the relative hydrolytic specificity of PGA for produced antibiotics with respect to the activated acyl donor, were only 0.028 and 0.043, respectively. The extremely low hydrolytic activity for the products of the ßF24G mutant enabled greater product accumulation to occur during synthesis, which made it a promising enzyme for industrial applications.


Assuntos
Antibacterianos/metabolismo , Proteínas Mutantes/metabolismo , Penicilina Amidase/metabolismo , Providencia/enzimologia , Providencia/metabolismo , beta-Lactamas/metabolismo , Amoxicilina/metabolismo , Cefadroxila/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Penicilina Amidase/genética , Penicilina Amidase/isolamento & purificação , Fatores de Tempo
18.
Appl Microbiol Biotechnol ; 102(17): 7455-7464, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29968036

RESUMO

High level expression of penicillin G acylase (PGA) in Escherichia coli is generally constricted by a complex maturation process and multiple limiting steps. In this study, three PGAs isolated from Providencia rettgeri (PrPGA), Alcaligenes faecalis (AfPGA), and Achromobacter xylosoxidans (AxPGA) were efficiently expressed in E. coli by replacing with applicable signal peptide. Different bottlenecks of the expression process were analyzed for PrPGA, AfPGA, and AxPGA. Subsequently, five efficient signal peptides, including OmpA, pelB, Lpp, PhoA, and MalE, were used to replace the original signal peptides of the PGAs. With respect to AfPGA and AxPGA, translocation was the primary limitation, and the use of pelB signal peptide effectively overcame this barrier. For PrPGA, which was almost not expressed in wild type, the translation initiation efficiency was optimized by replacing with MalE signal peptide. In addition, low temperature (20 °C) slowed down the transcription and translation, thereby facilitating the posttranslational process and preventing the formation of inclusion bodies. Furthermore, combined induction with IPTG and arabinose not only enhanced the cell density but also remarkably improved the expression of PGAs. Final specific activities of the three PGAs reached 2100 (PrPGA), 9200 (AfPGA), and 1400 (AxPGA) U/L/OD600, respectively. This simple and robust strategy by fitting replacement of signal peptide might dramatically improve the expression of PGAs from various bacteria, which was significant in the production of many valuable ß-lactam antibiotics.


Assuntos
Regulação Enzimológica da Expressão Gênica , Microbiologia Industrial/métodos , Penicilina Amidase/genética , Sinais Direcionadores de Proteínas/genética , Achromobacter denitrificans/enzimologia , Achromobacter denitrificans/genética , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Escherichia coli/genética , Providencia/enzimologia , Providencia/genética
19.
Nano Lett ; 17(12): 7447-7454, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29172544

RESUMO

Oligopeptide hydrogels for localized protein delivery have considerable potential to reduce systemic side effects but maximize therapeutic efficacy. Although enzyme catalysis to induce formation of oligopeptide hydrogels has the merits of unique regio- and enantioselectivity and mild reaction conditions, it may cause the impairment of function and activity of the encapsulated proteins by proteolytic degradation during gelation. Here we report a novel enzyme-catalysis strategy for self-assembly of oligopeptide hydrogels using an engineered protease nanocapsule with tunable substrate selectivity. The protease-encapsulated nanocapsule shielded the degradation activity of protease on the laden proteins due to the steric hindrance by the polymeric shell weaved around the protease, whereas the small-molecular precursors were easier to penetrate across the polymeric network and access the catalytic pocket of the protease to convert to the gelators for self-assembling hydrogel. The resulting oligopeptide hydrogels supported a favorable loading capacity without inactivation of both an antiangiogenic protein, hirudin and an apoptosis-inducing cytokine, TRAIL as model proteins. The hirudin and TRAIL coloaded oligopeptide hydrogel for combination cancer treatment showed enhanced synergistic antitumor effects both in vitro and in vivo.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Oligopeptídeos/química , Peptídeo Hidrolases/química , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cápsulas , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/administração & dosagem , Citocinas/química , Liberação Controlada de Fármacos , Hirudinas/administração & dosagem , Hirudinas/química , Humanos , Hidrogéis , Camundongos , Transplante de Neoplasias , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/química , Trombina/administração & dosagem , Trombina/química
20.
Microb Cell Fact ; 16(1): 231, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268791

RESUMO

BACKGROUND: The high level of excretion and rapid folding ability of ß-fructofuranosidase (ß-FFase) in Escherichia coli has suggested that ß-FFase from Arthrobacter arilaitensis NJEM01 can be developed as a fusion partner. METHODS: Based on the modified Wilkinson and Harrison algorithm and the preliminary verification of the solubility-enhancing ability of ß-FFase truncations, three ß-FFase truncations (i.e., Ffu209, Ffu217, and Ffu312) with a native signal peptide were selected as novel Ffu fusion tags. Four difficult-to-express protein models; i.e., CARDS TX, VEGFR-2, RVs and Omp85 were used in the assessment of Ffu fusion tags. RESULTS: The expression levels and solubility of each protein were markedly enhanced by the Ffu fusion system. Each protein had a favorable Ffu tag. The Ffu fusion tags performed preferably when compared with the well-known fusion tags MBP and NusA. Strikingly, it was confirmed that Ffu fusion proteins were secreted into the periplasm by the periplasmic analysis and N-amino acid sequence analysis. Further, efficient excretion of HV3 with defined anti-thrombin activity was obtained when it was fused with the Ffu312 tag. Moreover, HV3 remained soluble and demonstrated notable anti-thrombin activity after the removal of the Ffu312 tag by enterokinase. CONCLUSIONS: Observations from this work not only complements fusion technologies, but also develops a novel and effective secretory system to solve key issues that include inclusion bodies and degradation when expressing heterologous proteins in E. coli, especially for proteins that require disulfide bond formation, eukaryotic-secreted proteins, and membrane-associated proteins.


Assuntos
Arthrobacter/enzimologia , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Expressão Gênica , beta-Frutofuranosidase/metabolismo , Arthrobacter/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Solubilidade , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA