Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Fish Shellfish Immunol ; 151: 109727, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936520

RESUMO

Gossypol, a naturally occurring compound found in cottonseed meal, shows promising therapeutic potential for human diseases. However, within the aquaculture industry, it is considered an antinutritional factor. The incorporation of cottonseed meal into fish feed introduces gossypol, which induces intracellular stresses and hinders overall health of farmed fish. The aim of this study is to determine the role of General control nonderepressible 2 (gcn2), a sensor for intracellular stresses in gossypol-induced stress responses in fish. In the present study, we established two gcn2 knockout zebrafish lines. A feeding trial was conducted to assess the growth-inhibitory effect of gossypol in both wild type and gcn2 knockout zebrafish. The results showed that in the absence of gcn2, zebrafish exhibited increased oxidative stress and apoptosis when exposed to gossypol, resulting in higher mortality rates. In feeding trial, dietary gossypol intensified liver inflammation in gcn2-/- zebrafish, diminishing their growth and feed conversion. Remarkably, administering the antioxidant N-acetylcysteine (NAC) was effective in reversing the gossypol induced oxidative stress and apoptosis, thereby increasing the gossypol tolerance of gcn2-/- zebrafish. Exposure to gossypol induces more severe mitochondrial stress in gcn2-/- zebrafish, thereby inducing metabolic disorders. These results reveal that gcn2 plays a protective role in reducing gossypol-induced oxidative stress and apoptosis, attenuating inflammation responses, and enhancing the survivability of zebrafish in gossypol-challenged conditions. Therefore, maintaining appropriate activation of Gcn2 may be beneficial for fish fed diets containing gossypol.

2.
Fish Physiol Biochem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814520

RESUMO

Fish growth and health are predominantly governed by dietary nutrient supply. Although the beneficial effects of omega-3 polyunsaturated fatty acids supplementation have been shown in a number of fish species, the underlying mechanisms are still mostly unknown. In this study, we conducted an investigation into the effects of EPA and DHA on cell proliferation, nutrient sensing signaling, and branched-chain amino acids (BCAA) transporting in primary turbot muscle cells. The findings revealed that EPA and DHA could stimulate cell proliferation, promote protein synthesis and inhibit protein degradation through activation of target of rapamycin (TOR) signaling pathway, a pivotal nutrient-sensing signaling cascade. While downregulating the expression of myogenin and myostatin, EPA and DHA increased the level of myogenic regulatory factors, such as myoD and follistatin. Furthermore, we observed a significant increase in the concentrations of intracellular BCAAs following treatment with EPA or DHA, accompanied by an upregulation of the associated amino acid transporters. Our study providing valuable insights into the mechanisms underlying the growth-promoting effects of omega-3 fatty acids in fish.

3.
Fish Shellfish Immunol ; 141: 109068, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37699494

RESUMO

Autophagy is a conserved cellular self-digestion process and is essential for individual growth, cellular metabolism and inflammatory responses. It was responsive to starvation, pathogens infection and environmental stress. However, the information on the regulation of autophagy in fish hepatic intermediary metabolism, antioxidant system, and immune responses were limited. In the present study, turbot with inhibited autophagy flux was built by dietary chloroquine. The hepatic metabolic response, antioxidant enzymes and immune responses were explored. Results showed that dietary chloroquine induced the expression of Beclin 1, SQSTM and LC-3II, and effectively inhibited autophagy flux. Autophagy dysfunction depressed fish growth and feed utilization, while it induced clusters of liver lipid droplets. The genes involved in lipolysis and fatty acid ß-oxidation, as well as the lipogenesis-related genes in chloroquine group were depressed. The phosphorylation of AMPK was activated in chloroquine group, and the genes involved in glycolysis were induced. The hepatic content of malonyldialdehyde and the activities of SOD and CAT were induced when autophagy was inhibited. The content of Complement 3, Complement 4 and Immunoglobulin M, as well as the activity of lysozyme in plasma were depressed in chloroquine group. Dietary chloroquine induced the expression of toll-like receptors and stimulated the expression of myd88 and nf-κb p65, as well as the pro-inflammatory cytokines, such as tnf-α and il-1ß. The expression of anti-inflammatory cytokine tgf-ß was depressed in the chloroquine group. Our results would extend the knowledge on the role of autophagy in teleost and assist in improving fishery production.


Assuntos
Antioxidantes , Linguados , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Imunidade Inata , Proteínas de Peixes/metabolismo , Dieta/veterinária , Citocinas/metabolismo , Ração Animal/análise
4.
Fish Shellfish Immunol ; 141: 109060, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678482

RESUMO

Intestinal damage and inflammation are major health and welfare issues in aquaculture. Considerable efforts have been devoted to enhancing intestinal health, with a specific emphasis on dietary additives. Branch chain amino acids, particularly leucine, have been reported to enhance growth performance in various studies. However, few studies have focused on the effect of leucine on the intestinal function and its underlying molecular mechanism is far from fully illuminated. In the present study, we comprehensively evaluated the effect of dietary leucine supplementation on intestinal physiology, signaling transduction and microbiota in fish. Juvenile turbot (Scophthalmus maximus L.) (10.13 ± 0.01g) were fed with control diet (Con diet) and leucine supplementation diet (Leu diet) for 10 weeks. The findings revealed significant improvements in intestinal morphology and function in the turbot fed with Leu diet. Leucine supplementation also resulted in a significant increase in mRNA expression levels of mucosal barrier genes, indicating enhanced intestinal integrity. The transcriptional levels of pro-inflammatory factors il-1ß, tnf-α and irf-1 was decreased in response to leucine supplementation. Conversely, the level of anti-inflammatory factors tgf-ß, il-10 and nf-κb were up-regulated by leucine supplementation. Dietary leucine supplementation led to an increase in intestinal complement (C3 and C4) and immunoglobulin M (IgM) levels, along with elevated antioxidant activity. Moreover, dietary leucine supplementation significantly enhanced the postprandial phosphorylation level of the target of rapamycin (TOR) signaling pathway in the intestine. Finally, intestinal bacterial richness and diversity were modified and intestinal bacterial composition was re-shaped by leucine supplementation. Overall, these results provide new insights into the beneficial role of leucine supplementation in promoting intestinal health in turbot, offering potential implications for the use of leucine as a nutritional supplement in aquaculture practices.


Assuntos
Linguados , Microbiota , Animais , Leucina/farmacologia , Linguados/microbiologia , Intestinos , Transdução de Sinais , Dieta/veterinária , Suplementos Nutricionais/análise , Ração Animal/análise
5.
Ecotoxicol Environ Saf ; 253: 114672, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36827896

RESUMO

Ammonia is the primary environmental factor affecting the growth and health of crustaceans. It would induce oxidative stress and metabolic disorders. Extra amount of energy was demanded to maintain the physiological functions under ammonia stress. However, limited information was available on its effects on the main nutrient metabolism, as well as the nutrient sensing signaling pathways. In the present study, shrimp Litopenaeus vannamei were exposed to acute ammonia stress and injected with amino acid solution. The results showed that acute ammonia exposure resulted in lower free amino acid levels in hemolymph, incomplete activation of the mechanistic target of rapamycin (mTOR) signaling and cascaded less protein synthesis in muscle. It induced autophagy and activated the AMP-activated protein kinase (AMPK) pathway. Meanwhile, ammonia exposure enhanced glycolysis and lipogenesis, but inhibited lipolysis. The results characterized the integrated metabolic responses and nutrient signaling to ammonia stress. It provides critical clues to understand the growth performance and physiological responses in shrimp under ammonia stress.


Assuntos
Amônia , Penaeidae , Animais , Amônia/toxicidade , Amônia/metabolismo , Estresse Fisiológico , Penaeidae/metabolismo , Metabolismo Energético , Aminoácidos/metabolismo
6.
Inorg Chem ; 61(14): 5465-5468, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35354284

RESUMO

The facile exfoliation of a two-dimensional metal-organic nanosheet of {[Co(HL)(H2O)(Py)3/4]·1/2H2O·DMF}n [1-Py; H3L = 5-(1H-pyrazol-4-yl)isophthalic acid and Py = pyridine] was achieved, via a molecular scalpel strategy, by weakening intermolecular forces between adjacent layers. The resulting 1-Py/KB40 (KB = Ketjen black) shows an increased oxygen evolution reaction (OER) performance with an overpotential of 370 mV at a current density of 10 mA cm-2 and a Tafel slope of 58 mV dec-1. This work sheds light on the structure-morphology-reactivity relationship of such materials in OER.

7.
Inorg Chem ; 61(46): 18335-18339, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346707

RESUMO

The generation and regulation of chirality are closely related to the origin of life. Using achiral precursors to spontaneously build chiral MOFs remains a major challenge. Here, a method to synthesize chiral MOFs from achiral precursors by utilizing chiral fragments was achieved. The transformation from chiral fragments of 1 to chiral frameworks of 2 and 3 was realized by modifying the substituents, and the enantiomer resolution of 3-P41212 and 3-P43212 was achieved by d/l camphoric acid. 3 was then further studied in applications.


Assuntos
Estruturas Metalorgânicas
8.
Inorg Chem ; 61(1): 47-51, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34935390

RESUMO

Under solvothermal conditions, a three-dimensional mononuclear crystal AQNU-1, {[Co(H2L)(DPD)(H2O)2]·2DMA}n (H2L = 5-(bis(4-carboxybenzyl)amino)isophthalic acid, DPD = 4,4'-(2,5-diethoxy-1,4-phenylene)dipyridine) has been synthesized. The transformations of AQNU-1 to binuclear {[Co2(L)(DPD)1.5(H2O)3]·DMA·H2O}n (AQNU-2) and pentanuclear {[Co5(L)2(DPD)2(OH)2]·2H2O}n (AQNU-3) were realized by double stimulation of temperature and solvent, which were accomplished by single-crystal to single-crystal (SC-SC) reaction.

9.
Chem Rev ; 120(5): 2879-2949, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32078296

RESUMO

Heterogeneous interfaces that are ubiquitous in optoelectronic devices play a key role in the device performance and have led to the prosperity of today's microelectronics. Interface engineering provides an effective and promising approach to enhancing the device performance of organic field-effect transistors (OFETs) and even developing new functions. In fact, researchers from different disciplines have devoted considerable attention to this concept, which has started to evolve from simple improvement of the device performance to sophisticated construction of novel functionalities, indicating great potential for further applications in broad areas ranging from integrated circuits and energy conversion to catalysis and chemical/biological sensors. In this review article, we provide a timely and comprehensive overview of current efficient approaches developed for building various delicate functional interfaces in OFETs, including interfaces within the semiconductor layers, semiconductor/electrode interfaces, semiconductor/dielectric interfaces, and semiconductor/environment interfaces. We also highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits, which have been neglected in most previous reviews. This review will provide a fundamental understanding of the interplay between the molecular structure, assembly, and emergent functions at the molecular level and consequently offer novel insights into designing a new generation of multifunctional integrated circuits and sensors toward practical applications.

10.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457018

RESUMO

Eukaryotic cells control nutritional homeostasis and determine cell metabolic fate through a series of nutrient transporters and metabolic regulation pathways. Lysosomal localized amino acid transporter member 9 of the solute carrier family 38 (SLC38A9) regulates essential amino acids' efflux from lysosomes in an arginine-regulated fashion. To better understand the physiological role of SLC38A9, we first described the spatiotemporal expression pattern of the slc38a9 gene in zebrafish. A quarter of slc38a9-/- mutant embryos developed pericardial edema and died prematurely, while the remaining mutants were viable and grew normally. By profiling the transcriptome of the abnormally developed embryos using RNA-seq, we identified increased apoptosis, dysregulated amino acid metabolism, and glycolysis/gluconeogenesis disorders that occurred in slc38a9-/- mutant fish. slc38a9 deficiency increased whole-body free amino acid and lactate levels but reduced glucose and pyruvate levels. The change of glycolysis-related metabolites in viable slc38a9-/- mutant fish was ameliorated. Moreover, loss of slc38a9 resulted in a significant reduction in hypoxia-inducible gene expression and hypoxia-inducible factor 1-alpha (Hif1α) protein levels. These results improved our understanding of the physiological functions of SLC38A9 and revealed its indispensable role in embryonic development, metabolic regulation, and stress adaption.


Assuntos
Mortalidade Prematura , Peixe-Zebra , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Animais , Apoptose/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Fish Physiol Biochem ; 48(4): 1091-1103, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35842553

RESUMO

Lysine is one of the most important essential amino acids in fish, especially in the feed formulated with high levels of plant ingredients. Lysine restriction always led to growth inhibition and poor feed utilization. However, little information was available on its effects on digestion, absorption, and metabolism response in fish. In the present study, three experimental diets were formulated with three lysine levels, 1.69% (LL group), 3.32% (ML group), and 4.90% (HL group). A 10-week feeding trial was carried out to explore the effects of dietary lysine levels on the digestive enzymes, amino acid transporters, and hepatic intermediary metabolism in turbot (Scophthalmus maximus). As the results showed, the activities of lipase and trypsin in ML group were higher than in other groups. Lysine restriction inhibited the expression levels of peptides and amino acid transporters such as PpeT1, y+LAT2, b0,+AT, and rBAT but significantly induced the expression of CAT1. Meanwhile, lysine deficiency elevated the content of T-CHO and LDL-C in plasma, while a higher HDL-C/LDL-C ratio was observed in ML group. For hepatic intermediary metabolism, the increase of lysine level induced the mRNA expression of G6Pase1 and FBPase, but no differences were observed in the expression of the key regulators in glycolysis pathway, such as GK and PK. Furthermore, an appropriate increase in the level of lysine promoted the genes involved in lipolysis, including PPARα, ACOX1, CPT1A, and LPL. However, no differences were observed in the expression of PPARγ, FAS, SREBP1, and LXR, which were important genes related to lipid synthesis. These results provide clues on the metabolic responses on dietary lysine in teleost.


Assuntos
Linguados , Aminoácidos Essenciais , Animais , LDL-Colesterol/metabolismo , Dieta/veterinária , Linguados/genética , Metabolismo dos Lipídeos , Lisina
12.
J Am Chem Soc ; 143(7): 2886-2895, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33577309

RESUMO

The charge transport in single-molecule junctions depends critically on the chemical identity of the anchor groups that are used to connect the molecular wires to the electrodes. In this research, we report a new anchoring strategy, called the electrostatic anchor, formed through the efficient Coulombic interaction between the gold electrodes and the positively charged pyridinium terminal groups. Our results show that these pyridinium groups serve as efficient electrostatic anchors forming robust gold-molecule-gold junctions. We have also observed binary switching in dicationic viologen molecular junctions, demonstrating an electron injection-induced redox switching in single-molecule junctions. We attribute the difference in low- and high-conductance states to a dicationic ground state and a radical cationic metastable state, respectively. Overall, this anchoring strategy and redox-switching mechanism could constitute the basis for a new class of redox-activated single-molecule switches.

13.
J Nutr ; 151(10): 2957-2966, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34255073

RESUMO

BACKGROUND: Feeding-induced cell signaling and metabolic responses affect utilization of dietary nutrients but are rarely taken advantage of to improve animal nutrition. OBJECTIVES: We hypothesized that by modulating postprandial kinetics and signaling, improved dietary utilization and growth performance could be achieved in animals. METHODS: Juvenile turbot (Scophthalmus maximus L.) with an initial mean ± SD weight of 10.1 ± 0.01 g were used. Two feeding frequencies (FFs), either 1 or 3 meals/d at a fixed 2.4% daily body weight ration, and 2 diets that were or were not supplemented with 1% crystalline leucine (Leu), were used in the 10-wk feeding trial. At the end of the trial, a 1-d force-feeding experiment was conducted using the aforementioned FF and experimental diets. Samples were collected for the analysis of postprandial kinetics of aminoacidemia, mechanistic target of rapamycin (mTOR) signaling activities, protein deposition, as well as the mRNA expression levels of key metabolic checkpoints at consecutive time points after feeding. RESULTS: Increased FF and leucine supplementation significantly enhanced fish growth by 7.68% ± 0.53% (means ±SD) and 7.89% ± 1.25%, respectively, and protein retention by 4.01% ± 0.59% and 4.44% ± 1.63%, respectively, in feeding trial experiments. The durations of postprandial aminoacidemia and mTOR activation were extended by increased FF, whereas leucine supplementation enhanced mTOR signaling without influencing the postprandial free amino acids kinetics. Increased FF and leucine supplementation enhanced muscle protein deposition 21.6% ± 6.85% and 22.3% ± 1.52%, respectively, in a 24-h postfeeding period. CONCLUSIONS: We provided comprehensive characterization of the postprandial kinetics of nutrient sensing and metabolic responses under different feeding regimens and leucine supplementation in turbot. Fine-tuning of postprandial kinetics could provide a new direction for better dietary utilization and animal performances in aquaculture.


Assuntos
Linguados , Animais , Dieta/veterinária , Suplementos Nutricionais , Leucina , Período Pós-Prandial
14.
J Nanobiotechnology ; 19(1): 312, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635104

RESUMO

The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Técnicas Analíticas Microfluídicas , Análise de Célula Única , Animais , Humanos , Camundongos
15.
Fish Shellfish Immunol ; 99: 603-608, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32109612

RESUMO

Supplying immunostimulants to aquatic feed has been an effective way to enhance the health of aquatic animals and substitute for antibiotics. In the present study, the potential effects of Astragalus polysaccharides (APS) were evaluated in turbot, Scophthalmus maximus. Two levels of APS (50 and 150 mg/kg) were added to the basal diet (CON) and a 63-day growth trial (initial weight 10.13 ± 0.04 g) was conducted. As the results showed, significant improvement on growth performance in the APS groups were observed. In addition, dietary 150 mg/kg APS significantly increased the total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX) and lysozyme activities in liver. Meanwhile, APS diets induced the mRNA expression of toll-like receptors (TLRs) such as tlr5α, tlr5ß, tlr8 and tlr21, while reduced the expression of tlr3 and tlr22. The expression of inflammatory genes myeloid differentiation factor 88 and nuclear factor kappa b p65 and pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1ß were up-regulated in APS groups while the expression of anti-inflammatory cytokine transforming growth factor beta was inhibited. Taken together, the present study indicated that Astragalus polysaccharides could remarkably enhance the growth performance, antioxidant activity and maintain an active immune response in turbot.


Assuntos
Astrágalo/química , Carboidratos da Dieta/administração & dosagem , Linguados/crescimento & desenvolvimento , Linguados/imunologia , Polissacarídeos/administração & dosagem , Animais , Antioxidantes/metabolismo , Peso Corporal , Suplementos Nutricionais , Linguados/fisiologia , Inflamação , Fígado/imunologia , Muramidase/metabolismo , Transdução de Sinais/imunologia
16.
Fish Shellfish Immunol ; 100: 261-271, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32135340

RESUMO

Fermentation has been reported to improve the utilization of plant ingredients including soybean meal (SBM) by fish, but the detailed mechanism is still poorly understood. This study compared the effects of partial replacement of fish meal (FM) protein with SBM or Enterococcus faecium fermented SBM (EFSM) on the growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). The FM-based diet was used as the control (CONT). Two experimental diets were formulated in which 45% of the FM protein was replaced with SBM or EFSM. Each diet was fed to triplicate groups of fish (7.57 ± 0.01 g) twice daily for 79 d. Inferior growth performance was observed in SBM group, however, no significant depression was observed in EFSM group compared to the CONT group. The CONT group had the highest values of lysozyme, complement component 3, total antioxidant capacity, superoxide dismutase and catalase, followed by the EFSM group, and the lowest in SBM group. The malondialdehyde content was lowest in the CONT group, followed by the EFSM group, and was highest in the SBM group. Gut morphology showed that SBM diet induced alterations typical for intestinal inflammation including decreased villus and microvillus height, and increased width and inflammatory cell infiltration of the lamina propria. However, the EFSM group alleviated such SBM-induced intestinal pathological disruption. Paralleled with the morphological symptoms, the inflammatory gene expression levels of tumor necrosis factor alpha, interleukin-1 beta and interleukin-8 were highest in the SBM group, followed by the EFSM group, and were lowest in the CONT group. Furthermore, the intestinal microbiota analysis revealed that EFSM group had an overall more similar microbiota with CONT group than SBM group. Specifically, compared with the SBM group, EFSM group significantly enhanced the probiotics Lactobacillus and anti-inflammatory bacterium Faecalibaculum, and inhibited the Vibrio. Collectively, this study indicated that Enterococcus faecium fermentation effectively counteracted the negative effects of SBM by enhancing antioxidant capacity, suppressing inflammatory responses, and modulating gut microbiota in turbot.


Assuntos
Ração Animal/análise , Alimentos Fermentados/análise , Linguados/imunologia , Microbioma Gastrointestinal , Glycine max , Inflamação , Alimentos Crus/análise , Animais , Antioxidantes , Aquicultura , Suplementos Nutricionais/análise , Enterococcus faecium , Linguados/anatomia & histologia
17.
Fish Shellfish Immunol ; 102: 460-468, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32389740

RESUMO

This study was designed to evaluate whether the administration of commensal Shewanella sp. MR-7 (MR-7) could ameliorate lipopolysaccharide (LPS)-induced intestine dysfunction in turbot. Fish (body weight: 70.00 ± 2.00 g) were randomly divided into three groups including the control group treated with dough, the LPS group treated with dough plus LPS, and the LPS+MR-7 (LMR) group treated with dough plus LPS and MR-7. These three groups with 24 fish each were force-fed with 1 g dough daily for 7 continuous days. The results revealed that MR-7 administration ameliorated LPS-induced intestinal injury, showing higher intestinal villus and microvillus height. Further results showed that MR-7 could inhibit LPS-induced activation of TLR-NF-κB signaling thus maintaining the normal expression levels of cytokines and finally ameliorate the intestinal inflammatory response in turbot. Compared with the LPS group, LMR group had less goblet cells and lower mucin-2 expression level. Moreover, MR-7 restored LPS-induced down-regulation of tight junction protein-related gene expression (zonula occluden-1, occludin, tricellulin and claudin-3). Further investigations indicated that MR-7 partially counteracted LPS-induced changes in gut microbiota composition, enhanced the beneficial bacteria Lactobacillus and reduced the Pseudomonas, thus maintaining the overall microbiota balance. Taken together, the administration of MR-7 could effectively restore LPS-induced intestine function disorder in turbot by ameliorating inflammatory response, mucosal barrier dysfunction and microbiota dysbiosis.


Assuntos
Doenças dos Peixes/imunologia , Linguados/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Probióticos/farmacologia , Shewanella/química , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/etiologia , Linguados/anatomia & histologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/imunologia , Inflamação/veterinária , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/fisiopatologia , Intestinos/anatomia & histologia , Intestinos/imunologia , Intestinos/fisiopatologia , Lipopolissacarídeos/farmacologia , Distribuição Aleatória
18.
Inorg Chem ; 59(10): 7181-7187, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32352295

RESUMO

Lanthanide (such as Tb and Eu) metal-organic frameworks (MOFs) have been widely used in fluorescent probes because of their multiple coordination modes and brilliant fluorescence characteristic. Many lanthanide MOFs were applied in detecting metal ions, inorganic anions, and small molecules. However, it's rarely reported that Ln-MOF was devoted to detecting malachite green (MG) and uric acid (UA). We prepared a europium-based metal-organic framework (Eu-TDA) (TDA = 2,5-thiophenedicarboxylic acid group). Luminescence studies demonstrated that Eu-TDA can rapidly detect MG and UA with excellent selectivity and sensitivity, where individual quenching efficiency Ksv (MG: 5.8 × 105 M-1; UA: 4.15 × 104 M-1) and detection limit (MG: 0.0221 µM; UA: 0.689 µM) were regarded as the excellent MOF sensors for detecting MG and UA. The quenching of Eu-TDA's fluorescence emission by MG and UA was likely due to the spectral overlap, energy transfer, and competition. Among 11 metal cations and 14 anions, Eu-TDA can quickly and effectively recognize MG and UA with highly selective and sensitive properties. Our method possesses potential application in detecting UA in human blood and MG in the fishpond.

19.
Nano Lett ; 19(10): 7201-7209, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557044

RESUMO

Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.


Assuntos
Eletroporação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanoestruturas , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/análise , Desenho de Equipamento , Humanos , Nanoestruturas/química , Nanotecnologia/instrumentação , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo
20.
Small ; 15(6): e1804298, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605244

RESUMO

A variety of nanomaterial-based biosensors have been developed to sensitively detect biomolecules in vitro, yet limited success has been achieved in real-time sensing in vivo. The application of microneedles (MN) may offer a solution for painless and minimally-invasive transdermal biosensing. However, integration of nanostructural materials on microneedle surface as transdermal electrodes remains challenging in applications. Here, a transdermal H2 O2 electrochemical biosensor based on MNs integrated with nanohybrid consisting of reduced graphene oxide and Pt nanoparticles (Pt/rGO) is developed. The Pt/rGO significantly improves the detection sensitivity of the MN electrode, while the MNs are utilized as a painless transdermal tool to access the in vivo environment. The Pt/rGO nanostructures are protected by a water-soluble polymer layer to avoid mechanical destruction during the MN skin insertion process. The polymer layer can readily be dissolved by the interstitial fluid and exposes the Pt/rGO on MNs for biosensing in vivo. The applications of the Pt/rGO-integrated MNs for in situ and real-time sensing of H2 O2 in vivo are demonstrated both on pigskin and living mice. This work offers a unique real-time transdermal biosensing system, which is a promising tool for sensing in vivo with high sensitivity but in a minimally-invasive manner.


Assuntos
Técnicas Biossensoriais , Grafite/química , Nanopartículas/química , Agulhas , Administração Cutânea , Animais , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio/análise , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Platina/química , Povidona/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA