RESUMO
The fleece traits are important economic traits of goats. With the reduction of sequencing and genotyping cost and the improvement of related technologies, genomic selection for goats has become possible. The research collect pedigree, phenotype and genotype information of 2299 Inner Mongolia Cashmere goats (IMCGs) individuals. We estimate fixed effects, and compare the estimates of variance components, heritability and genomic predictive ability of fleece traits in IMCGs when using the pedigree based Best Linear Unbiased Prediction (ABLUP), Genomic BLUP (GBLUP) or single-step GBLUP (ssGBLUP). The fleece traits considered are cashmere production (CP), cashmere diameter (CD), cashmere length (CL) and fiber length (FL). It was found that year of production, sex, herd and individual ages had highly significant effects on the four fleece traits (P < 0.01). All of these factors should be considered when the genetic parameters of fleece traits in IMCGs are evaluated. The heritabilities of FL, CL, CP and CD with ABLUP, GBLUP and ssGBLUP methods were 0.26 ~ 0.31, 0.05 ~ 0.08, 0.15 ~ 0.20 and 0.22 ~ 0.28, respectively. Therefore, it can be inferred that the genetic progress of CL is relatively slow. The predictive ability of fleece traits in IMCGs with GBLUP (56.18% to 69.06%) and ssGBLUP methods (66.82% to 73.70%) was significantly higher than that of ABLUP (36.73% to 41.25%). For the ssGBLUP method is significantly (29% ~ 33%) higher than that with ABLUP, and which is slightly (4% ~ 14%) higher than that of GBLUP. The ssGBLUP will be as an superiors method for using genomic selection of fleece traits in Inner Mongolia Cashmere goats.
Assuntos
Genoma , Cabras , Humanos , Animais , Cabras/genética , Genômica/métodos , Fenótipo , Genótipo , Modelos GenéticosRESUMO
The cryopreservation and transplantation of ovarian tissue underscore its paramount importance in safeguarding reproductive capacity and ameliorating reproductive disorders. However, challenges persist in ovarian tissue cryopreservation and transplantation (OTC-T), including the risk of tissue damage and dysfunction. Consequently, there has been a compelling exploration into the realm of nanoregulators to refine and enhance these procedures. This review embarks on a meticulous examination of the intricate anatomical structure of the ovary and its microenvironment, thereby establishing a robust groundwork for the development of nanomodulators. It systematically categorizes nanoregulators and delves deeply into their functions and mechanisms, meticulously tailored for optimizing ovarian tissue cryopreservation and transplantation. Furthermore, the review imparts valuable insights into the practical applications and obstacles encountered in clinical settings associated with OTC-T. Moreover, the review advocates for the utilization of microbially derived nanomodulators as a potent therapeutic intervention in ovarian tissue cryopreservation. The progression of these approaches holds the promise of seamlessly integrating nanoregulators into OTC-T practices, thereby heralding a new era of expansive applications and auspicious prospects in this pivotal domain.
Assuntos
Criopreservação , Ovário , Criopreservação/métodos , Feminino , Humanos , AnimaisRESUMO
The goat genome is the research basis for the protection and utilization of goat resources, which is important for breeding and improving goat breeds. At present, with the continuous improvement of goat reference genome, various important research progress in goat origin, evolution and adaptability has been achieved. In this review, we summarize the research progress in the goat genome in detail, encompassing goat genome structure, genome map (genetic, physical and comparative maps), goat high throughput sequencing and SNP chip development. We aim to provide a theoretical foundation for the development of goat genome selection.
Assuntos
Mapeamento Cromossômico , Genoma , Cabras/genética , Animais , CruzamentoRESUMO
Background and purpose: Differentiating high-grade gliomas (HGGs) from solitary brain metastases (SBMs) using conventional magnetic resonance imaging (MRI) remains challenging due to their similar imaging features. This study aimed to evaluate the diagnostic performance of advanced diffusion models, such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator magnetic resonance imaging (MAP-MRI), incomparison to traditional techniques like diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI) for distinguishing HGGs from SBMs. Methods: In total, 17 patients with HGGs and 26 patients with SBMs were prospectively recruited based on the established inclusion and exclusion criteria. Structural MRI sequences and diffusion spectrum imaging (DSI) were utilized to assess quantitative parameter models, including NODDI, MAP-MRI, DWI, DTI, and DKI. Quantitative parameters were measured for both the tumor parenchymal area and the peritumoral edema area. The quantitative parameters of the two patient groups were compared using either the independent Student's t-test or the Mann-Whitney U test. The effectiveness of each model was evaluated using receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC). Finally, the DeLong test was employed to compare the diagnostic performance of each model through pairwise comparisons of ROC curves. Results: Isotropic volume fraction (Viso) based on NODDI; mean squared displacement (MSD) and the return to plane probabilities (RTPP) based on MAP-MRI; radial diffusivity (RDk) and mean diffusivity (MDk) based on DKI; and axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) based on DTI of the peritumoral edema tumor were significantly different between HGGs and SBMs (p < 0.05). The optimal single discriminant parameters for each model are NODDI_Viso, MAP-MRI_MSD, DKI_MDk, and DTI_AD. Among these, the AUC of Viso (0.809) exceeds that of MSD (0.733), MDk (0.718), and AD (0.779). The combined model, which incorporates DTI_AD, DKI_RD, and NODDI_Viso, demonstrated superior diagnostic performance (0.897). Conclusions: Advanced diffusion MRI quantitative parameters derived from NODDI, such as Viso, have the potential to enhance the differentiation between HGGs and SBMs. The integrated utilization of these models is anticipated to enhance diagnostic accuracy and refine MRI protocols for brain tumor assessment.
RESUMO
Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fungal communities to altitude and soil depth, and the co-occurrence patterns influencing soil fungal metabolic preferences on Dongling Mountain. We observed significant variations in fungal ß-diversity, driven by elevation and soil depth, with climatic parameters (MAT and MAP) and nutrient concentrations (TOC, TP, and TN) serving as prominent influencers. Additionally, we found that the multiple substrate-induced respiration rate of fungi degrading various carbon substrates was diminished in high-altitude and subsurface soils compared to low-altitude and surface soils. Stochastic processes play a more important role in controlling fungal community assembly than deterministic processes, with dispersal limitation emerging as the main driver of community assembly. While greater network complexity was evident in the topsoil compared to the subsoil, both layers harbored altitude-sensitive OTUs (asOTUs) that belonging to distinct modules. Moreover, fungal groups sensitive to the same altitude exhibited similar metabolic preferences. The asOTUs designated for lower altitude areas favored unstable carbon substrates (glucose and sucrose), while those designated as higher altitude areas exhibited a preference for recalcitrant carbon (xylan and lignin). This evidence suggests that soil fungal communities respond to environmental changes by trading off their life strategies and metabolic characteristics.
Assuntos
Altitude , Fungos , Microbiologia do Solo , Solo , Solo/química , Micobioma , ChinaRESUMO
Objective: To explore the characteristics of spontaneous brain activity changes in patients with lumbar disc herniation (LDH), and help reconcile the contradictory findings in the literature and enhance the understanding of LDH-related pain. Materials and methods: PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), SinoMed, and Wanfang databases were searched for literature that studies the changes of brain basal activity in patients with LDH using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation (ALFF/fALFF) analysis methods. Activation likelihood estimation (ALE) was used to perform a meta-analysis of the brain regions with spontaneous brain activity changes in LDH patients compared with healthy controls (HCs). Results: A total of 11 studies were included, including 7ALFF, 2fALFF, and 2ReHo studies, with a total of 269 LDH patients and 277 HCs. Combined with the data from the ALFF/fALFF and ReHo studies, the meta-analysis results showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right middle frontal gyrus (MFG), left anterior cingulate cortex (ACC) and the right anterior lobe of the cerebellum, while they had decreased spontaneous brain activity in the left superior frontal gyrus (SFG). Meta-analysis using ALFF/fALFF data alone showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right MFG and left ACC, but no decrease in spontaneous brain activity was found. Conclusion: In this paper, through the ALE Meta-analysis method, based on the data of reported rs-fMRI whole brain studies, we found that LDH patients had spontaneous brain activity changes in the right middle frontal gyrus, left anterior cingulate gyrus, right anterior cerebellar lobe and left superior frontal gyrus. However, it is still difficult to assess whether these results are specific and unique to patients with LDH. Further neuroimaging studies are needed to compare the effects of LDH and other chronic pain diseases on the spontaneous brain activity of patients. Furthermore, the lateralization results presented in our study also require further LDH-related pain side-specific grouping study to clarify this causation. Systematic review registration: PROSPERO, identifier CRD42022375513.
RESUMO
The fertility of women is crucial for the well-being of individuals and families. However, various factors such as chemotherapy, lifestyle changes, among others, may lead to a decline in female fertility, thus emphasizing the significance of preserving and restoring fertility. Stem cells, with their unique capacity for self-renewal and pluripotent differentiation, have made significant strides in areas such as ovarian tissue cryopreservation, in vitro culture of frozen-thawed ovarian tissue, and construction of ovarian-like organs. This review aims to summarize the latest findings in these fields, highlighting the pivotal role, mechanisms, and future prospects of stem cell technology in preserving and restoring female fertility. Additionally, the importance of interdisciplinary collaboration is underscored, as personalized stem cell therapy regimens tailored through interdisciplinary cooperation between reproductive medicine and stem cell fields hold promise in providing reliable solutions for the preservation and restoration of female fertility.
RESUMO
Biomarkers are not only of significant importance for cancer diagnosis and selection of treatment plans but also recently increasingly used for the evaluation of malignancy development and tumor heterogeneity. Large-size tumors from clinical patients can be unique and valuable sources for the study of cancer progression, particularly to the extent of intratumoral heterogeneity. In the present study, we obtained a series of post-surgery puncture samples from a breast cancer patient with a 4 × 3.5 × 2 cm tumor in its original size. Immunohistochemistry for Ki-67, COX-2, and CA IX was performed and the expression levels within the breast cancer tumor mass were evaluated in the reconstructed 3D models. To further evaluate the intratumoral heterogeneity, we performed high throughput whole transcriptome sequencing of 12 samples from different spatial positions within the tumor tissue. Comparing the reconstructed 3D distribution of biomarkers with projected tumor growth models, asymmetric and heterogeneous expansion of tumor mass was found to be possibly influenced by factors such as blood supply, inflammation and/or hypoxia stimulations, as suggested from the correlation between the results of Ki-67 and CA IX or COX-2 staining. Furthermore, high-throughput RNA sequencing data provided additional information for profiling the intratumoral heterogeneity and expanded the understanding of cancer progression. Digital technology for medical imaging once properly integrated with molecular pathology examinations will become particularly helpful in dissecting out in-depth information for precision medicine. We prospect that this approach, facilitated by rapidly advancing artificial intelligence, could provide new insights for clinical decision-making in the future. Strategies for the continuous development from the present study for better performance and application were discussed.
RESUMO
Soil bacterial communities are essential for ecosystem function, yet their response along altitudinal gradients in different soil strata remains unclear. Understanding bacterial community co-occurrence networks and assembly patterns in mountain ecosystems is crucial for comprehending microbial ecosystem functions. We utilized Illumina MiSeq sequencing to study bacterial diversity and assembly patterns of surface and subsurface soils across a range of elevations (700 to 2100 m) on Dongling Mountain. Our results showed significant altitudinal distribution patterns concerning bacterial diversity and structure in the surface soil. The bacterial diversity exhibited a consistent decrease, while specific taxa demonstrated unique patterns along the altitudinal gradient. However, no altitudinal dependence was observed for bacterial diversity and community structure in the subsurface soil. Additionally, a shift in bacterial ecological groups is evident with changing soil depth. Copiotrophic taxa thrive in surface soils characterized by higher carbon and nutrient content, while oligotrophic taxa dominate in subsurface soils with more limited resources. Bacterial community characteristics exhibited strong correlations with soil organic carbon in both soil layers, followed by pH in the surface soil and soil moisture in the subsurface soil. With increasing depth, there is an observable increase in taxa-taxa interaction complexity and network structure within bacterial communities. The surface soil exhibits greater sensitivity to environmental perturbations, leading to increased modularity and an abundance of positive relationships in its community networks compared to the subsurface soil. Furthermore, the bacterial community at different depths was influenced by combining deterministic and stochastic processes, with stochasticity (homogenizing dispersal and undominated) decreasing and determinism (heterogeneous selection) increasing with soil depth.
Assuntos
Ecossistema , Solo , Solo/química , Carbono , Microbiologia do Solo , Florestas , Bactérias , ChinaRESUMO
Due to the pivotal role of mitochondria in the generation of adenosine triphosphate (ATP) and the regulation of cellular homeostasis, mitochondrial dysfunction may exert a profound impact on various physiological systems, potentially precipitating a spectrum of distinct diseases. Consequently, research pertaining to mitochondrial therapeutics has assumed increasing significance, warranting heightened scrutiny. In recent years, the field of mitochondrial therapy has witnessed noteworthy advancements, with active exploration into diverse pharmacological agents aimed at ameliorating mitochondrial function. Elamipretide (SS-31), a novel synthetic mitochondrial-targeted antioxidant, has emerged as a promising candidate with extensive therapeutic potential. Its notable attributes encompass the mitigation of oxidative stress, the suppression of inflammatory processes, the maintenance of mitochondrial dynamics, and the prevention of cellular apoptosis. As such, SS-31 may emerge as a viable choice for the treatment of mitochondrial dysfunction-related ailments in the foreseeable future. This article extensively expounds upon the superiority of SS-31 over natural antioxidants and traditional mitochondrial-targeted antioxidants, delves into its mechanisms of modulating mitochondrial function, and comprehensively summarizes its applications in alleviating mitochondrial dysfunction-associated disorders. Furthermore, we offer a comprehensive outlook on the expansive prospects of SS-31's future development and application.
Assuntos
Antioxidantes , Doenças Mitocondriais , Humanos , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Peptídeos/farmacologia , Estresse Oxidativo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismoRESUMO
The study proposes a combined nomogram based on radiomics features from magnetic resonance neurohydrography and clinical features to identify symptomatic nerves in patients with primary trigeminal neuralgia. We retrospectively analyzed 140 patients with clinically confirmed trigeminal neuralgia. Out of these, 24 patients constituted the external validation set, while the remaining 116 patients contributed a total of 231 nerves, comprising 118 symptomatic nerves, and 113 normal nerves. Radiomics features were extracted from the MRI water imaging (t2-mix3d-tra-spair). Radiomics feature selection was performed using L1 regularization-based regression, while clinical feature selection utilized univariate analysis and multivariate logistic regression. Subsequently, radiomics, clinical, and combined models were developed by using multivariate logistic regression, and a nomogram of the combined model was drawn. The performance of nomogram in discriminating symptomatic nerves was assessed through the area under the curve (AUC) of receiver operating characteristics, accuracy, and calibration curves. Clinical applications of the nomogram were further evaluated using decision curve analysis. Five clinical factors and 13 radiomics signatures were ultimately selected to establish predictive models. The AUCs in the training and validation cohorts were 0.77 (0.70-0.84) and 0.82 (0.72-0.92) with the radiomics model, 0.69 (0.61-0.77) and 0.66 (0.53-0.79) with the clinical model, 0.80 (0.74-0.87), and 0.85 (0.76-0.94) with the combined model, respectively. In the external validation set, the AUCs for the clinical, radiomics, and combined models were 0.70 (0.60-0.79), 0.78 (0.65-0.91), and 0.81 (0.70-0.93), respectively. The calibration curve demonstrated that the nomogram exhibited good predictive ability. Moreover, The decision curve analysis curve indicated shows that the combined model holds high clinical application value. The integrated model, combines radiomics features from magnetic resonance neurohydrography with clinical factors, proves to be effective in identify symptomatic nerves in trigeminal neuralgia. The diagnostic efficacy of the combined model was notably superior to that of the model constructed solely from conventional clinical features.
Assuntos
Radiômica , Neuralgia do Trigêmeo , Humanos , Nomogramas , Estudos Retrospectivos , Neuralgia do Trigêmeo/diagnóstico por imagem , Imageamento por Ressonância Magnética , ÁguaRESUMO
Microorganisms exist throughout the soil profile and those microorganisms living in deeper soil horizons likely play key roles in regulating biogeochemical processes. However, the vertical differentiations of microbes along soil depth and their global biogeographical patterns remain poorly understood. Herein, we conducted a global meta-analysis to clarify the vertical changes of microbial biomass, diversity, and microbial relative abundance across the soil profiles. Data was collected from 43 peer-reviewed articles of 110 soil profiles (467 observations in total) from around the world. We found soil microbial biomass and bacterial diversity decreased with depth in soils. Among examined edaphic factors, the depth variation in soil pH exhibited significant negative associations with the depth change in microbial biomass and bacterial Shannon index, while soil total organic carbon (TOC) and total nitrogen (TN) exhibited significant positive associations. For the major bacteria phyla, the relative abundances of Proteobacteria and Bacteroidetes decreased with soil depth, while Chloroflexi, Gemmatimonadetes, and Nitrospirae increased. We found both parallels and differences in the biogeographical patterns of microbial attribute of topsoil vs. subsoil. Microbial biomass was significantly controlled by the soil nutrient concentrations in both topsoil and subsoil compared with climatic factors, while bacterial Shannon index was significantly controlled by the edaphic factors and across latitudes or climatic factors. Moreover, mean annual precipitation can also be used as a predictor of microbial biomass in subsoil which is different from topsoil. Collectively, our results provide a novel integrative view of how microbial biomass and bacterial community response to soil depth change and clarify the controlling factors of the global distribution patterns of microbial biomass and diversity, which are critical to enhance ecosystem simulation models and for formulating sustainable ecosystem management and conservation policies.
Assuntos
Ecossistema , Microbiologia do Solo , Biomassa , Bactérias , Solo/químicaRESUMO
PTEN loss in fetal liver hematopoietic stem cells (HSCs) leads to alterations in myeloid, T-, and B-lineage potentials and T-lineage acute lymphoblastic leukemia (T-ALL) development. To explore the mechanism underlying PTEN-regulated hematopoietic lineage choices, we carry out integrated assay for transposase-accessible chromatin using sequencing (ATAC-seq), single-cell RNA-seq, and in vitro culture analyses using in vivo-isolated mouse pre-leukemic HSCs and progenitors. We find that PTEN loss alters chromatin accessibility of key lineage transcription factor (TF) binding sites at the prepro-B stage, corresponding to increased myeloid and T-lineage potentials and reduced B-lineage potential. Importantly, we find that PU.1 is an essential TF downstream of PTEN and that altering PU.1 levels can reprogram the chromatin accessibility landscape and myeloid, T-, and B-lineage potentials in Ptennull prepro-B cells. Our study discovers prepro-B as the key developmental stage underlying PTEN-regulated hematopoietic lineage choices and suggests a critical role of PU.1 in modulating the epigenetic state and lineage plasticity of prepro-B progenitors.
Assuntos
Cromatina , Transativadores , Animais , Camundongos , Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas/metabolismo , Ligação Proteica , Transativadores/metabolismoRESUMO
Ovaries are important reproductive and endocrine organs in women. Ovarian tissue cryopreservation and transplantation technology can not only solve the fertility problems of patients, but also may improve female endocrine problems. This is particularly important for patients in urgent need of radiotherapy and chemotherapy, and for women with prepubertal malignant tumors. However, follicle loss after freeze-thawing is a key challenge for effective ovarian tissue transplantation and leads to poor transplant outcomes. Therefore, it is crucial to elucidate the mechanisms underlying follicle loss after transplantation. This paper reviews current research on the mechanisms of follicle loss after frozen-thawed ovarian tissue transplantation, including the activation, apoptosis, and pyroptosis mechanisms of primordialfollicles. Further, it highlights the requirement of more experimental studies for improving ovarian tissue transplantation methods.
Assuntos
Folículo Ovariano , Ovário , Feminino , Humanos , Ovário/fisiologia , Folículo Ovariano/fisiologia , Criopreservação , ApoptoseRESUMO
Soil bacterial and fungal community communities play significant ecological functions in mountain ecosystems. However, it is not clear how topographic factors and soil physicochemical properties influence changes in microbial community structure and diversity. This study aims to investigate how altitude and slope orientation affect soil physicochemical properties, soil microbial communities, and their contributing factors. The assessment was conducted using Illumina MiSeq sequencing in various altitude gradients and on slopes with different aspects (shady slopes and sunny slopes) in the subalpine meadow of Dongling Mountain, Beijing. Topographical factors had a significant effect on soil physicochemical properties: the primary factors determining the structure of microbial communities are total potassium (TK), ammonium nitrogen (NH4+-N), and soil organic carbon (SOC). There was no significant change in the diversity of the bacterial community, whereas the diversity of the fungal community displayed a single-peaked trend. The effect of slope orientation on microbial communities was not as significant as the effect of elevation on them. The number of bacterial communities with significant differences showed a unimodal trend, while the number of fungal communities showed a decreasing trend. The co-occurrence network of fungal communities exhibits greater intricacy than that of bacterial communities, and bacterial communities are more complex in soils with sunny slopes compared to soils with shady slopes, and the opposite is true for fungal communities. The identification of the main factors that control soil microbial diversity and composition in this study, provided the groundwork for investigating the soil microbial response and adaptation to environmental changes in subalpine meadows.
RESUMO
Following onset of the first recorded case of Coronavirus disease 2019 (COVID-19) in December 2019, more than 269 million cases and over 5.3 million deaths have been confirmed worldwide. COVID-19 is a highly infectious pneumonia, caused by a novel virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, it poses a severe threat to human health across the globe, a trend that is likely to persist in the foreseeable future. This paper reviews SARS-CoV-2 immunity, the latest development of anti-SARS-CoV-2 drugs as well as exploring in detail, immune escape induced by SARS-CoV-2. We expect that the findings will provide a basis for COVID-19 prevention and treatment.
Assuntos
COVID-19 , Pandemias , Humanos , Imunidade , SARS-CoV-2RESUMO
There is genetic diversity of hair types in the Inner Mongolia cashmere goat population. Previous studies have found that fibroblast growth factor 21 (FGF21) and PI3K-AKT signal pathways may be related to different hair types in Inner Mongolia cashmere goats. Therefore, the purpose of this study was to explore the effects of the PI3K-AKT signal pathway on different hair types, the expression of mRNA and protein expression sites of FGF21 in the hair follicles of cashmere goats with different hair types, so as to lay a foundation for understanding the molecular mechanism of different hair types and the role of skin hair follicle development. In this experiment, the skin tissues of long hair type (LHG) and short hair type (SHG) of Inner Mongolia cashmere goat were collected in three key periods of secondary hair follicle growth, namely, anagen (September), catagen (December), and telogen (March). The relative expression of FGF21 and PI3K-AKT signal pathway candidate gene mRNA in different periods and different hair types was detected by real-time fluorescence quantitative technique (qRT-PCR), and the expression site of FGF21 protein was located by immunohistochemical technique. Through qRT-PCR, it was found that the relative expression of FGF21, FGFR1, AKT3, BRCA1, PKN3, SPP1, and GNG4 was significantly different between LHG and SHG. The expression of FGF21 in the skin of LHG was significantly higher than that of SHG in the three periods. Through immunohistochemical test, it was found that FGF21 protein was mainly expressed in primary hair follicle connective tissue sheath, primary hair follicle outer root sheath, secondary hair follicle outer root sheath, and sebaceous glands. It was also found that the expression of LHG skin tissue in the outer root sheath of primary hair follicles was higher than that of SHG in three periods. In summary, it is suggested that the PI3K-AKT signal pathway may play an important role in the formation of different hair types in Inner Mongolia cashmere goats.
There is genetic diversity of hair types in Inner Mongolia cashmere goat population. The purpose of this study was to explore the effects of the PI3K-AKT signal pathway on different hair types, the expression of mRNA and protein expression sites of FGF21 in the hair follicles of cashmere goats with different hair types, so as to lay a foundation for understanding the molecular mechanism of different hair types. It was found that the relative expression of FGF21, FGFR1, AKT3, BRCA1, PKN3, SPP1, and GNG4 was significantly different between LHG and SHG. It was found that FGF21 protein was mainly expressed in primary hair follicle connective tissue sheath, primary hair follicle outer root sheath, secondary hair follicle outer root sheath, and sebaceous glands. It was also found that the expression of LHG skin tissue in the outer root sheath of primary hair follicles was higher than that of SHG in three periods. So, it is suggested that the PI3K-AKT signal pathway and FGF21 may play an important role in the formation of different hair types in Inner Mongolia cashmere goats.
Assuntos
Cabras , Fosfatidilinositol 3-Quinases , Animais , Cabras/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cabelo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Objective: Body weight is an important economic trait for a goat, which greatly affects animal growth and survival. The purpose of this study was to identify genes associated with birth weight (BW), weaning weight (WW), and yearling weight (YW). Materials and Methods: In this study, a genome-wide association study (GWAS) of BW, WW, and YW was determined using the GGP_Goat_70K single-nucleotide polymorphism (SNP) chip in 1,920 Inner Mongolia cashmere goats. Results: We discovered that 21 SNPs were significantly associated with BW on the genome-wide levels. These SNPs were located in 10 genes, e.g., Mitogen-Activated Protein Kinase 3 (MAPK3), LIM domain binding 2 (LDB2), and low-density lipoprotein receptor-related protein 1B (LRP1B), which may be related to muscle growth and development in Inner Mongolia Cashmere goats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these genes were significantly enriched in the regulation of actin cytoskeleton and phospholipase D signaling pathway etc. Conclusion: In summary, this study will improve the marker-assisted breeding of Inner Mongolia cashmere goats and the molecular mechanisms of important economic traits.
RESUMO
Tissue engineering is promising in realizing successful treatments of human body tissue loss that current methods cannot treat well or achieve satisfactory clinical outcomes. In scaffold-based bone tissue engineering, a high performance scaffold underpins the success of a bone tissue engineering strategy and a major direction in the field is to produce bone tissue engineering scaffolds with desirable shape, structural, physical, chemical and biological features for enhanced biological performance and for regenerating complex bone tissues. Three-dimensional (3D) printing can produce customized scaffolds that are highly desirable for bone tissue engineering. The enormous interest in 3D printing and 3D printed objects by the science, engineering and medical communities has led to various developments of the 3D printing technology and wide investigations of 3D printed products in many industries, including biomedical engineering, over the past decade. It is now possible to create novel bone tissue engineering scaffolds with customized shape, architecture, favorable macro-micro structure, wettability, mechanical strength and cellular responses. This article provides a concise review of recent advances in the R & D of 3D printing of bone tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of bone tissue engineering scaffolds through 3D printing.