RESUMO
The roles of clock components in salt stress tolerance remain incompletely characterized in rice. Here, we show that, among OsPRR (Oryza sativa Pseudo-Response Regulator) family members, OsPRR73 specifically confers salt tolerance in rice. Notably, the grain size and yield of osprr73 null mutants were significantly decreased in the presence of salt stress, with accumulated higher level of reactive oxygen species and sodium ions. RNA sequencing and biochemical assays identified OsHKT2;1, encoding a plasma membrane-localized Na+ transporter, as a transcriptional target of OsPRR73 in mediating salt tolerance. Correspondingly, null mutants of OsHKT2;1 displayed an increased tolerance to salt stress. Immunoprecipitation-mass spectrometry (IP-MS) assays further identified HDAC10 as nuclear interactor of OsPRR73 and co-repressor of OsHKT2;1. Consistently, H3K9ac histone marks at OsHKT2;1 promoter regions were significantly reduced in osprr73 mutant. Together, our findings reveal that salt-induced OsPRR73 expression confers salt tolerance by recruiting HDAC10 to transcriptionally repress OsHKT2;1, thus reducing cellular Na+ accumulation. This exemplifies a new molecular link between clock components and salt stress tolerance in rice.
Assuntos
Proteínas CLOCK/genética , Histona Desacetilases/metabolismo , Oryza/crescimento & desenvolvimento , Tolerância ao Sal , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação com Perda de Função , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Sódio/metabolismoRESUMO
To enhance plant fitness under natural conditions, the circadian clock is synchronized and entrained by light via photoreceptors. In turn, the circadian clock exquisitely regulates the abundance and activity of photoreceptors via largely uncharacterized mechanisms. Here we show that the clock regulator TIME FOR COFFEE (TIC) controls the activity of the far-red light photoreceptor phytochrome A (phyA) at multiple levels in Arabidopsis thaliana. Null mutants of TIC displayed dramatically increased sensitivity to light irradiation with respect to hypocotyl growth, especially to far-red light. RNA-sequencing demonstrated that TIC and phyA play largely opposing roles in controlling light-regulated gene expression at dawn. Additionally, TIC physically interacts with the transcriptional repressor TOPLESS (TPL), which was associated with the significantly increased PHYA transcript levels in the tic-2 and tpl-1 mutants. Moreover, TIC interacts with phyA in the nucleus, thereby affecting phyA protein turnover and the formation of phyA nuclear speckles following light irradiation. Genetically, phyA was found to act downstream of TIC in regulating far red light-inhibited growth. Taken together, these findings indicate that TIC acts as a major negative regulator of phyA by integrating transcriptional and post-translational mechanisms at multiple levels.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Tiques , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo , Luz , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismoRESUMO
Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza ruï¬pogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.
Assuntos
Endosperma , Oryza , Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Homeostase/genética , Oryza/genética , Oryza/metabolismo , OxirreduçãoRESUMO
Topological electronic materials such as bismuth selenide, tantalum arsenide and sodium bismuthide show unconventional linear response in the bulk, as well as anomalous gapless states at their boundaries. They are of both fundamental and applied interest, with the potential for use in high-performance electronics and quantum computing. But their detection has so far been hindered by the difficulty of calculating topological invariant properties (or topological nodes), which requires both experience with materials and expertise with advanced theoretical tools. Here we introduce an effective, efficient and fully automated algorithm that diagnoses the nontrivial band topology in a large fraction of nonmagnetic materials. Our algorithm is based on recently developed exhaustive mappings between the symmetry representations of occupied bands and topological invariants. We sweep through a total of 39,519 materials available in a crystal database, and find that as many as 8,056 of them are topologically nontrivial. All results are available and searchable in a database with an interactive user interface.
RESUMO
Contact engineering enhances electronic device performance and functions but often involves costly, inconvenient fabrication and material replacement processes. We develop an in situ, reversible, full-device-scale approach to reconfigurable 2D van der Waals contacts. Ideal p-type Schottky contacts free from surface dangling bonds and Fermi-level pinning are constructed at structurally superlubric graphite-MoS2 interfaces. Pressure control is introduced, beyond a threshold of which tunneling across the contact can be activated and amplified at higher loads. Record-high figures of merits such an ideality factor nearing 1 and an off-state current of 10-11 A were reported. The concept of on-device moving contacts is demonstrated through a wearless Schottky generator, operating with an optimized overall efficiency of 50% in converting weak, random external stimuli into electricity. The device combines generator and pressure-sensor functions, achieving a high current density of 31 A/m2 and withstanding over 120,000 cycles, making it ideal for neuromorphic computing and mechanosensing applications.
RESUMO
The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.
RESUMO
Lipids and lipid metabolites have essential roles in plant-pathogen interactions. GDSL-type lipases are involved in lipid metabolism modulating lipid homeostasis. Some plant GDSLs modulate lipid metabolism altering hormone signal transduction to regulate host-defence immunity. Here, we functionally characterized a rice lipase, OsGELP77, promoting both immunity and yield. OsGELP77 expression was induced by pathogen infection and jasmonic acid (JA) treatment. Overexpression of OsGELP77 enhanced rice resistance to both bacterial and fungal pathogens, while loss-of-function of osgelp77 showed susceptibility. OsGELP77 localizes to endoplasmic reticulum and is a functional lipase hydrolysing universal lipid substrates. Lipidomics analyses demonstrate that OsGELP77 is crucial for lipid metabolism and lipid-derived JA homeostasis. Genetic analyses confirm that OsGELP77-modulated resistance depends on JA signal transduction. Moreover, population genetic analyses indicate that OsGELP77 expression level is positively correlated with rice resistance against pathogens. Three haplotypes were classified based on nucleotide polymorphisms in the OsGELP77 promoter where OsGELP77Hap3 is an elite haplotype. Three OsGELP77 haplotypes are differentially distributed in wild and cultivated rice, while OsGELP77Hap3 has been broadly pyramided for hybrid rice development. Furthermore, quantitative trait locus (QTL) mapping and resistance evaluation of the constructed near-isogenic line validated OsGELP77, a QTL for broad-spectrum disease resistance. In addition, OsGELP77-modulated lipid metabolism promotes JA accumulation facilitating grain yield. Notably, the hub defence regulator OsWRKY45 acts upstream of OsGELP77 by initiating the JA-dependent signalling to trigger immunity. Together, OsGELP77, a QTL contributing to immunity and yield, is a candidate for breeding broad-spectrum resistant and high-yielding rice.
Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Lipase/genética , Lipase/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Lipídeos , Doenças das Plantas/microbiologiaRESUMO
Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.
Assuntos
Glucosiltransferases , Oryza , Proteínas de Plantas , Sacarose , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Sacarose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimentoRESUMO
The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.
RESUMO
KEY MESSAGE: OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.
Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Fotoperíodo , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimentoRESUMO
Microglia/macrophages are major contributors to neuroinflammation in the central nervous system (CNS) injury and exhibit either pro- or anti-inflammatory phenotypes in response to specific microenvironmental signals. Our latest in vivo and in vitro studies demonstrated that curcumin-treated olfactory ensheathing cells (aOECs) can effectively enhance neural survival and axonal outgrowth, and transplantation of aOECs improves the neurological outcome after spinal cord injury (SCI). The therapeutic effect is largely attributed to aOEC anti-inflammatory activity through the modulation of microglial polarization from the M1 to M2 phenotype. However, very little is known about what viable molecules from aOECs are actively responsible for the switch of M1 to M2 microglial phenotypes and the underlying mechanisms of microglial polarization. Herein, we show that Interleukin-4 (IL-4) plays a leading role in triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 markers IL1ß, IL6, tumour necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) and elevating the levels of M2 markers Arg-1, TGF-ß, IL-10, and CD206. Strikingly, blockade of IL-4 signaling by siRNA and a neutralizing antibody in aOEC medium reverses the transition of M1 to M2, and the activated microglia stimulated with the aOEC medium lacking IL-4 significantly decreases neuronal survival and neurite outgrowth. In addition, transplantation of aOECs improved the neurological function deficits after SCI in rats. More importantly, the crosstalk between JAK1/STAT1/3/6-targeted downstream signals and NF-κB/SOCS1/3 signaling predominantly orchestrates IL-4-modulated microglial polarization event. These results provide new insights into the molecular mechanisms of aOECs driving the M1-to-M2 shift of microglia and shed light on new therapies for SCI through the modulation of microglial polarization.
Assuntos
Curcumina , Traumatismos da Medula Espinal , Animais , Ratos , Microglia , Interleucina-4/farmacologia , Curcumina/farmacologia , Macrófagos , Traumatismos da Medula Espinal/terapia , Anti-InflamatóriosRESUMO
Rice grain size and grain weight, which have a great influence on rice quality and yield, are complex quantitative traits that are mediated by grain length (GL), grain width (GW), length-to-width ratio (LWR), and grain thickness (GT). In this study, the BC1F2 and BC1F2:3 populations derived from a cross between two indica rice varieties, Guangzhan 63-4S (GZ63-4S) and Dodda, were used to locate quantitative trait loci (QTL) related to grain size. A total of 30 QTL associated with GL, GW and LWR were detected, of which six QTL were scanned repeatedly in both populations. Two QTL, qGL4 and qGL6, were selected for genetic effect validation and were subsequently fine mapped to 2.359 kb and 176 kb, respectively. LOC_Os04g52240 (known as OsKS2/OsKSL2), which encoding an ent-beyerene synthase and as the only gene found in 2.359 kb interval, was proposed to be the candidate for qGL4. Moreover, the grains of qGL4 homozygous mutant plants generated by the CRISPR-Cas9 system became shorter and wider. In addition, the qGL4 allele from GZ63-4S contributes to the increase of yield per plant. Our study not only laid the foundation for further functional study of qGL4 and map-based cloning of qGL6, but also provided genetic resources for the development of high yield and good quality rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01502-8.
RESUMO
Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.
RESUMO
The timely detection of falls and alerting medical aid is critical for health monitoring in elderly individuals living alone. This paper mainly focuses on issues such as poor adaptability, privacy infringement, and low recognition accuracy associated with traditional visual sensor-based fall detection. We propose an infrared video-based fall detection method utilizing spatial-temporal graph convolutional networks (ST-GCNs) to address these challenges. Our method used fine-tuned AlphaPose to extract 2D human skeleton sequences from infrared videos. Subsequently, the skeleton data was represented in Cartesian and polar coordinates and processed through a two-stream ST-GCN to recognize fall behaviors promptly. To enhance the network's recognition capability for fall actions, we improved the adjacency matrix of graph convolutional units and introduced multi-scale temporal graph convolution units. To facilitate practical deployment, we optimized time window and network depth of the ST-GCN, striking a balance between model accuracy and speed. The experimental results on a proprietary infrared human action recognition dataset demonstrated that our proposed algorithm accurately identifies fall behaviors with the highest accuracy of 96%. Moreover, our algorithm performed robustly, identifying falls in both near-infrared and thermal-infrared videos.
Assuntos
Acidentes por Quedas , Algoritmos , Raios Infravermelhos , Redes Neurais de Computação , Gravação em Vídeo , Humanos , Gravação em Vídeo/métodosRESUMO
Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.
Assuntos
Mapeamento Cromossômico , Grão Comestível , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Fenótipo , Cromossomos de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimentoRESUMO
The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.
Assuntos
Mapeamento Cromossômico , Ligação Genética , Oryza , Fenótipo , Locos de Características Quantitativas , Oryza/genética , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Cromossomos de Plantas/genética , Genes de PlantasRESUMO
Phase control over cation exchange (CE) reactions has emerged as an important approach for the synthesis of nanomaterials (NMs), enabling precise determination of their reactivity and properties. Although factors such as crystal structure and morphology have been studied for the phase engineering of CE reactions in NMs, there remains a lack of systematic investigation to reveal the impact for the factors in heterogeneous materials. Herein, we report a molybdenum disulfide induced phase control method for synthesizing multidimensional Co3S4-MoS2 heteronanostructures (HNs) via cation exchange. MoS2 in parent Cu1.94S-MoS2 HNs are proved to affect the thermodynamics and kinetics of CE reactions, and facilitate the formation of Co3S4-MoS2 HNs with controlled phase. This MoS2 induced phase control method can be extended to other parent HNs with multiple dimensions, which shows its diversity. Further, theoretical calculations demonstrate that Co3S4 (111)/MoS2 (001) exhibits a higher adhesion work, providing further evidence that MoS2 enables phase control in the HNs CE reactions, inducing the generation of novel Co3S4-MoS2 HNs. As a proof-of-concept application for crystal phase- and dimensionality-dependent of cobalt sulfide based HNs, the obtained Co3S4-MoS2 heteronanoplates (HNPls) show remarkable performance in hydrogen evolution reactions (HER) under alkaline media. This synthetic methodology provides a unique design strategy to control the crystal structure and fills the gap in the study of heterogeneous materials on CE reaction over phase engineering that are otherwise inaccessible.
RESUMO
In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions. B-CUT&Tag combines streptavidin-biotin-based DNA purification with routine CUT&Tag, optimizing the removal of large amounts of intact chromatin not targeted by specific TFs. The biotinylated chromatin fragments are then purified for construction of deep sequencing libraries or qPCR analysis. We applied B-CUT&Tag to probe genome-wide DNA targets of Squamosa promoter-binding-like protein 9 (SPL9), a well-established TF in Arabidopsis; the resulting profiles were efficient and consistent in demonstrating its well-established target genes in juvenile-adult transition/flowering, trichome development, flavonoid biosynthesis, wax synthesis and branching. Interestingly, our results indicate functions of AtSPL9 in modulating growth-defence trade-offs. In addition, we established a method for applying qPCR after CUT&Tag (B-CUT&Tag-qPCR) and successfully validated the binding of SPL9 in Arabidopsis and PHR2 in rice. Our study thus provides a convenient and highly efficient CUT&Tag strategy for profiling TF-chromatin interactions that is widely applicable to the annotation of cis-regulatory elements for crop improvement.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA/genética , DNA/metabolismo , Cromatina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMO
As an endogenous time-keeping mechanism, the circadian clock benefits plant fitness and adaptation to the rhythmically changed diel environments. The key components within the core oscillator of plant circadian clock have been extensively characterised, however, the fine-tuning circadian regulators are still less identified. Here, we demonstrated that BBX28 and BBX29, the two B-Box V subfamily members lacking DNA-binding motifs, are involved in the regulation of Arabidopsis circadian clock. Over-expressing either BBX28 or BBX29 significantly lengthened circadian period, whereas loss-of-function of BBX28 rather than BBX29 displayed a modestly long period in free-running condition. Mechanistically, BBX28 and BBX29 interacted with core clock components PRR5, PRR7 and PRR9 in nucleus to augment their transcriptional repressive activities. RNA-sequencing analysis further revealed that BBX28 and BBX29 shared 686 common differentially expressed genes (DEGs) including a subset of known direct transcriptional targets of PRR proteins within core oscillator, including CCA1, LHY, LNKs and RVE8 etc. Intriguingly, PRR proteins can feedback repress BBX28 and BBX29 transcription by associating with their promoters. Together, our findings unmasked an exquisite mechanism in which BBX28 and BBX29 interplay with PRR proteins to fine-tune the circadian pace.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de PlantasRESUMO
High temperatures (HTs) seriously affect the yield and quality of tea. Catechins, derived from the flavonoid pathway, are characteristic compounds that contribute to the flavour of tea leaves. In this study, we first showed that the flavonoid content of tea leaves was significantly reduced under HT conditions via metabolic profiles; and then demonstrated that two transcription factors, CsHSFA1b and CsHSFA2 were activated by HT and negatively regulate flavonoid biosynthesis during HT treatment. Jasmonate (JA), a defensive hormone, plays a key role in plant adaption to environmental stress. However, little has been reported on its involvement in HT response in tea. Herein, we demonstrated that CsHSFA1b and CsHSFA2 activate CsJAZ6 expression through directly binding to heat shock elements in its promoter, and thereby repress the JA pathway. Most secondary metabolites are regulated by JA, including catechin in tea. Our study reported that CsJAZ6 directly interacts with CsEGL3 and CsTTG1 and thereby reduces catechin accumulation. From this, we proposed a CsHSFA-CsJAZ6-mediated HT regulation model of catechin biosynthesis. We also determined that negative regulation of the JA pathway by CsHSFAs and its homologues is conserved in Arabidopsis. These findings broaden the applicability of the regulation of JAZ by HSF transcription factors and further suggest the JA pathway as a valuable candidate for HT-resistant breeding and cultivation.