Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 543(7645): 385-390, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28273060

RESUMO

Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These findings have raised the question of whether other bone-derived hormones exist and what their potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood-brain barrier, binds to the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function of bone.


Assuntos
Regulação do Apetite/fisiologia , Osso e Ossos/metabolismo , Lipocalina-2/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Osso e Ossos/citologia , AMP Cíclico/metabolismo , Ingestão de Alimentos/fisiologia , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucose/metabolismo , Homeostase , Hipotálamo/citologia , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Masculino , Camundongos , Neurônios/metabolismo , Obesidade/metabolismo , Osteoblastos/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Magreza/metabolismo
3.
Cancer Sci ; 113(8): 2681-2692, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35637600

RESUMO

The discovery of long noncoding RNAs (lncRNAs) has improved the understanding of development and progression in various cancer subtypes. However, the role of lncRNAs in temozolomide (TMZ) resistance in glioblastoma multiforme (GBM) remains largely undefined. In this present study, the differential expression of lncRNAs was identified between U87 and U87 TMZ-resistant (TR) cells. lncRNA XLOC013218 (XLOC) was drastically upregulated in TR cells and was associated with poor prognosis in glioma. Overexpression of XLOC markedly increased TMZ resistance, promoted proliferation, and inhibited apoptosis in vitro and in vivo. In addition, RNA-seq analysis and gain-of-function or loss-of-function studies revealed that PIK3R2 was the potential target of XLOC. Mechanistically, XLOC recruited specificity protein 1 (Sp1) transcription factor and promoted the binding of Sp1 to the promoters of PIK3R2, which elevated the expression of PIK3R2 in both mRNA and protein levels. Finally, PIK3R2-mediated activation of the PI3K/AKT signaling pathway promoted TMZ resistance and cell proliferation, but inhibited cell apoptosis. In conclusion, these data highlight the vital role of the XLOC/Sp1/PIK3R2/PI3K/AKT axis in GBM TMZ resistance.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Glioma , Fosfatidilinositol 3-Quinases , RNA Longo não Codificante , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Temozolomida/farmacologia , Fatores de Transcrição/genética
4.
New Phytol ; 233(6): 2488-2502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35015902

RESUMO

Pteris vittata is an arsenic (As) hyperaccumulator that can accumulate several thousand mg As kg-1 DW in aboveground biomass. A key factor for its hyperaccumulation ability is its highly efficient As long-distance translocation system. However, the underlying molecular mechanisms remain unknown. We isolated PvAsE1 through the full-length cDNA over-expression library of P. vittata and characterized it through a yeast system, RNAi gametophytes and sporophytes, subcellular-location and in situ hybridization. Phylogenomic analysis was conducted to estimate the appearance time of PvAsE1. PvAsE1 was a plasma membrane-oriented arsenite (AsIII) effluxer. The silencing of PvAsE1 reduced AsIII long-distance translocation in P. vittata sporophytes. PvAsE1 was structurally similar to solute carrier (SLC)13 proteins. Its transcripts could be observed in parenchyma cells surrounding the xylem of roots. The appearance time was estimated at c. 52.7 Ma. PvAsE1 was a previously uncharacterized SLC13-like AsIII effluxer, which may contribute to AsIII long-distance translocation via xylem loading. PvAsE1 appeared late in fern evolution and might be an adaptive subject to the selection pressure at the Cretaceaou-Paleogene boundary. The identification of PvAsE1 provides clues for revealing the special As hyperaccumulation characteristics of P. vittata.


Assuntos
Arsênio , Arsenitos , Gleiquênias , Pteris , Poluentes do Solo , Arsênio/metabolismo , Arsenitos/metabolismo , Biodegradação Ambiental , Gleiquênias/metabolismo , Raízes de Plantas/metabolismo , Pteris/genética , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
5.
FASEB J ; 35(7): e21748, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152016

RESUMO

Although adipose-derived human mesenchymal stem cell (hADSC) transplantation has recently emerged as a promising therapeutic modality for Parkinson's disease (PD), its underlying mechanism of action has not been fully elucidated. This study evaluated the therapeutic effects of stereotaxic injection of hADSCs in the striatum of the 6-OHDA-induced mouse model. Furthermore, an in vitro PD model was constructed using tissue-organized brain slices. The therapeutic effect was also evaluated using a co-culture of the hADSCs and 6-OHDA-treated brain slice. The analysis of hADSC exocrine proteins using RNA-sequencing, human protein cytokine arrays, and label-free quantitative proteomics identified key extracellular factors in the hADSC secretion environment. The degeneration and apoptosis of the dopaminergic neurons were measured in the PD samples in vivo and in vitro, and the beneficial effects were evaluated using quantitative reverse transcription-polymerase chain reaction, western blotting, Fluoro-Jade C, TUNEL assay, and immunofluorescence analysis. This study found that hADSCs protected the dopaminergic neurons in the in vivo and vitro models. We identified Pentraxin 3 (PTX3) as a key extracellular factor in the hADSC secretion environment. Moreover, we found that human recombinant PTX3 (rhPTX3) treatment could rescue the pathophysiological behavior of the PD mice in vivo, prevent dopaminergic neuronal death, and increase neuronal terminals in the ventral tegmental area + substantia nigra pars compacta and striatum in the PD brain slices in vitro. Furthermore, testing of the pro-apoptotic markers in the PD mouse brain following rhPTX3 treatment revealed that rhPTX3 can prevent apoptosis and degeneration of the dopaminergic neurons. This study discovered that PTX3, a hADSC-secreted protein, potentially protected the dopaminergic neurons against apoptosis and degeneration during PD progression and improved motor performance in PD mice, indicating the possible mechanism of action of hADSC replacement therapy for PD. Thus, our study discovered potential translational implications for the development of PTX3-based therapeutics for PD.


Assuntos
Tecido Adiposo/metabolismo , Apoptose/fisiologia , Proteína C-Reativa/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Doença de Parkinson/metabolismo , Componente Amiloide P Sérico/metabolismo , Animais , Morte Celular/fisiologia , Células Cultivadas , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Am Chem Soc ; 141(51): 20097-20106, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31721575

RESUMO

Simple, rapid, and sensitive assays of DNA sequence hold great importance in genetic analysis, clinical diagnosis, and molecular biology research. Most current methods for DNA detection, based on the complementary base pairing, require hybridization with intricately modified single-stranded DNA (ssDNA) probes or analytes. Herein, we have developed a powerful molecule with aggregation-induced emission (AIE) characteristic, namely, TPBT, which can specifically recognize double-stranded DNA (dsDNA) by emitting out a unique dual-color fluorescent signal of red (∼640 nm) and green (∼537 nm). The red-color emission at around 640 nm is observed when TPBT binds with dsDNA, ssDNA, proteins, and other polyanionic analytes. However, the green emission at around 537 nm is demonstrated to be the exclusive response of TPBT to dsDNA, which is closely related to the conformational change of TPBT upon groove binding. More strikingly, TPBT can distinguish single-nucleotide polymorphisms (SNPs) in a dsDNA sequence and detect the DNA damage suffered from UV light with ultrahigh sensitivity and specificity. This label-free, AIEgen-based dsDNA assay method is facile, robust, and universal, which will lead to major advances in genomic and disease diagnosis.


Assuntos
Cor , DNA/análise , Corantes Fluorescentes/química , Fármacos Fotossensibilizantes/química , Estrutura Molecular
7.
Plant Cell Physiol ; 57(6): 1210-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27044671

RESUMO

SAL1, as a negative regulator of stress response signaling, has been studied extensively for its role in plant response to environmental stresses. However, the role of SAL1 in cadmium (Cd) stress response and the underlying mechanism is still unclear. Using an Arabidopsis thaliana loss-of-function mutant of SAL1, we assessed Cd resistance and further explored the Cd toxicity mechanism through analysis of the endoplasmic reticulum (ER) stress response. The loss of SAL1 function greatly improved Cd tolerance and significantly attenuated ER stress in Arabidopsis. Exposure to Cd induced an ER stress response in Arabidopsis as evidenced by unconventional splicing of AtbZIP60 and up-regulation of ER stress-responsive genes. Damage caused by Cd was markedly reduced in the ER stress response double mutant bzip28 bzip60 or by application of the ER stress-alleviating chemical agents, tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (4-PBA), in wild-type plants. The Cd-induced ER stress in Arabidopsis was also alleviated by loss of function of SAL1. These results identified SAL1 as a new component mediating Cd toxicity and established the role of the ER stress response in Cd toxicity. Additionally, the attenuated ER stress in the sal1 mutant might also shed new light on the mechanism of diverse abiotic stress resistance in the SAL1 loss-of-function mutants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Cádmio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mutação/genética , Monoéster Fosfórico Hidrolases/genética , Arabidopsis/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Tunicamicina/farmacologia
8.
New Phytol ; 209(2): 746-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26372374

RESUMO

The fern Pteris vittata is an arsenic hyperaccumulator. The genes involved in arsenite (As(III)) transport are not yet clear. Here, we describe the isolation and characterization of a new P. vittata aquaporin gene, PvTIP4;1, which may mediate As(III) uptake. PvTIP4;1 was identified from yeast functional complement cDNA library of P. vittata. Arsenic toxicity and accumulating activities of PvTIP4;1 were analyzed in Saccharomyces cerevisiae and Arabidopsis. Subcellular localization of PvTIP4;1-GFP fusion protein in P. vittata protoplast and callus was conducted. The tissue expression of PvTIP4;1 was investigated by quantitative real-time PCR. Site-directed mutagenesis of the PvTIP4;1 aromatic/arginine (Ar/R) domain was studied. Heterologous expression in yeast demonstrates that PvTIP4;1 was able to facilitate As(III) diffusion. Transgenic Arabidopsis showed that PvTIP4;1 increases arsenic accumulation and induces arsenic sensitivity. Images and FM4-64 staining suggest that PvTIP4;1 localizes to the plasma membrane in P. vittata cells. A tissue location study shows that PvTIP4;1 transcripts are mainly expressed in roots. Site-directed mutation in yeast further proved that the cysteine at the LE1 position of PvTIP4;1 Ar/R domain is a functional site. PvTIP4;1 is a new represented tonoplast intrinsic protein (TIP) aquaporin from P. vittata and the function and location results imply that PvTIP4;1 may be involved in As(III) uptake.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Arsenitos/farmacocinética , Proteínas de Plantas/metabolismo , Pteris/metabolismo , Aquaporinas/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Arsênio/toxicidade , Arsenitos/metabolismo , Transporte Biológico , Cisteína , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pteris/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Plant Cell Environ ; 39(2): 416-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26264234

RESUMO

Arsenate [As(V)] toxicity is considered to be derived from similarities in the chemical properties of As(V) and phosphate (Pi). An Arabidopsis thaliana mutant of inositol pentakisphosphate 2-kinase (AtIPK1), atipk1-1, has previously exhibited lower level of phytate and higher level of Pi, relative to wild-type (WT). Here, atipk1-1 displayed hypersensitivity to As(V) stress and less As(V) uptake when compared to WT. Overexpression of AtIPK1 controlled by the CaMV 35S promoter partially rescued the As(V)-sensitive phenotype of atipk1-1. When compared to control Pi status, addition of Pi enhanced As(V) tolerance of both WT and atipk1-1 plants, while the arsenic concentration was less reduced in the latter genotype. Despite the higher Pi level in atipk1-1 than did WT plants, the mutant suffered more severe Pi starvation under Pi limitation stress, indicating that Pi homeostasis was altered in the mutant. Gene expression analysis of WT and atipk1-1 plants showed the diverse effect of As(V) stress on Pi starvation-dependent regulation of Pi-responsive genes. Our study suggested that a particular mechanism of As(V) toxicity existed in atipk1-1 mutant, and may offer new insights into the interactions between Pi homeostasis and As(V) detoxification in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Arseniatos/toxicidade , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Fenótipo , Fosfatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
10.
Environ Sci Technol ; 47(16): 9355-62, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23899224

RESUMO

Arsenic (As) pollution is a global problem, and the plant-based cleanup of contaminated soils, called phytoremediation, is therefore of great interest. Recently, transgenic approaches have been designed to develop As phytoremediation technologies. Here, we used a one-gene transgenic approach for As tolerance and accumulation in Arabidopsis thaliana . PvACR3, a key arsenite [As(III)] antiporter in the As hyperaccumulator fern Pteris vittata , was expressed in Arabidopsis , driven by the CaMV 35S promoter. In response to As treatment, PvACR3 transgenic plants showed greatly enhanced tolerance. PvACR3 transgenic seeds could even germinate and grow in the presence of 80 µM As(III) or 1200 µM arsenate [As(V)] treatments that were lethal to wild-type seeds. PvACR3 localizes to the plasma membrane in Arabidopsis and increases arsenite efflux into external medium in short-term experiments. Arsenic determination showed that PvACR3 substantially reduced As concentrations in roots and simultaneously increased shoot As under 150 µM As(V). When cultivated in As(V)-containing soil (10 ppm As), transgenic plants accumulated approximately 7.5-fold more As in above-ground tissues than wild-type plants. This study provides important insights into the behavior of PvACR3 and the physiology of As metabolism in plants. Our work also provides a simple and practical PvACR3 transgenic approach for engineering As-tolerant and -hyperaccumulating plants for phytoremediation.


Assuntos
Arabidopsis/metabolismo , Arsênio/metabolismo , Pteris/genética , Arabidopsis/genética , Biodegradação Ambiental , Membrana Celular/metabolismo , Engenharia Genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo
11.
Bull Environ Contam Toxicol ; 91(6): 652-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24084979

RESUMO

The mechanisms by which Pteris vittata (L.) hyperaccumulates arsenic (As) have not been fully elucidated. To investigate how P. vittata tolerates high concentrations of arsenite, we compared the toxicities of various As compounds to P. vittata and Arabidopsis thaliana (L.). The phytotoxicities of As species were found to be in the order of arsenite > arsenate > dimethylarsinic acid (DMAA) in A. thaliana, and in the order of DMAA > arsenate > arsenite in P. vittata. P. vittata calli displayed a weaker ability to absorb arsenite than arsenate. These results demonstrate that P. vittata possesses mechanisms of As accumulation and detoxification.


Assuntos
Arabidopsis/efeitos dos fármacos , Arsênio/toxicidade , Ácido Cacodílico/toxicidade , Pteris/efeitos dos fármacos , Poluentes do Solo/toxicidade
12.
Sci Total Environ ; 859(Pt 1): 160135, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375547

RESUMO

Rapid global industrialization has resulted in widespread cadmium contamination in agricultural soils and products. A considerable proportion of rice consumers are exposed to Cd levels above the provisional safe intake limit, raising widespread environmental concerns on risk management. Therefore, a generalized approach is urgently needed to enable correct evaluation and early warning of cadmium contaminants in rice products. Combining big data and computer science together, this study developed a system named "SMART Cd Early Warning", which integrated 4 modules including genotype-to-phenotype (G2P) modelling, high-throughput sequencing, G2P prediction and rice Cd contamination risk assessment, for rice cadmium accumulation early warning. This system can rapidly assess the risk of rice cadmium accumulation by genotyping leaves at seeding stage. The parameters including statistical methods, population size, training population-testing population ratio, SNP density were assessed to ensure G2P model exhibited superior performance in terms of prediction precision (up to 0.76 ± 0.003) and computing efficiency (within 2 h). In field trials of cadmium-contaminated farmlands in Wenling and Fuyang city, Zhejiang Province, "SMART Cd Early Warning" exhibited superior capability for identification risk rice varieties, suggesting a potential of "SMART Cd Early-Warning system" in OsGCd risk assessment and early warning in the age of smart.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Solo , Medição de Risco
13.
ACS Appl Mater Interfaces ; 14(27): 30533-30545, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771755

RESUMO

With the emergence and global spread of bacterial resistance, pathogenic bacterial infections have become a serious threat to human health. Thus, therapeutic strategies with highly antibacterial efficacy and a low tendency to induce drug resistance are strongly desired to combat bacterial infections. Here, an ultra-efficient photodynamic/chemodynamic theranostics platform is developed by intercalating an aggregation-induced emission (AIE) photosensitizer, TPCI, into the nanolayers of iron-bearing montmorillonite (MMT). The formed TPCI/MMT composite can not only perform efficient photodynamic therapy (PDT) through a burst generation of singlet oxygen (1O2) upon white light illumination but also continuously implement chemodynamic therapy (CDT) by converting endogenous hydrogen peroxide into highly toxic hydroxyl radicals (•OH) due to iron release. In addition, the fluorescence of TPCI/MMT can be activated due to the AIE feature of TPCI, which helps guide the location of the antimicrobials. The combination of such powerful bombs (PDT) and unremitting ambushes (CDT) in TPCI/MMT can synergistically and effectively eliminate bacteria and promote faster wound healing in vivo with good biocompatibility and low side effects. The smart and simple design of TPCI/MMT provides a representative paradigm for achieving efficient antimicrobials to combat the coming resistance crisis.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Anti-Infecciosos/uso terapêutico , Bactérias , Humanos , Ferro , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Medicina de Precisão , Nanomedicina Teranóstica , Cicatrização
14.
Chemosphere ; 309(Pt 1): 136612, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179923

RESUMO

Mercury (Hg) is a toxic and nonessential element for organisms, and its contamination in the environment is a global concern. Previous research has shown that Hg stress may cause severe damage to rice roots; however, the transcriptomic changes in roots and physio-biochemical responses in leaves to different levels of Hg stress are not fully understood. In the present study, rice seedlings were exposed to 20, 80, and 160 µM HgCl2 for three days in hydroponic experiments. The results showed that the majority of Hg was accumulated in rice roots after Hg exposure, and the 80- and 160-µM Hg stresses significantly increased the root-to-shoot translocation factors relative to 20-µM Hg stress, resulting in elevated Hg concentrations in rice shoots. Only the 160-µM Hg stress significantly inhibited root growth compared with the control, while photosynthesis capacity in leaves was significantly reduced under Hg stress. RNA transcriptome sequencing analyses of the roots showed that common responsive differentially expressed genes were strongly associated with glutathione metabolism, amino acid biosynthesis, and secondary metabolite metabolism, which may play significant roles in Hg accumulation by rice plants. Nine crucial genes identified by protein-protein interaction network analysis may be used as candidate target genes for further investigation of the detoxification mechanism, encoding proteins involved in jasmonic acid synthesis, sugar metabolism, allene oxide synthase, glutathione peroxidase, dismutase, and catalase. Furthermore, physio-biochemical analyses of the leaves indicated that higher production of reactive oxygen species was induced by Hg stress, while glutathione and antioxidant enzymes may play crucial roles in Hg detoxification. Our findings provide transcriptomic and physio-biochemical features of rice roots and shoots, which advance our understanding of the responsive and detoxification mechanisms in rice under different levels of Hg stress.


Assuntos
Mercúrio , Oryza , Oryza/metabolismo , Catalase/metabolismo , Mercúrio/análise , Transcriptoma , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glutationa Peroxidase/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Glutationa/metabolismo , Aminoácidos/metabolismo , Açúcares/metabolismo , RNA/metabolismo
15.
Cell Death Dis ; 13(12): 1040, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517470

RESUMO

Ferroptosis is a recently-defined tumor suppression mechanism, but the sensitivity of many tumorigenic cells to ferroptosis is limited by their deficient expression of acyl-CoA synthetase long-chain family member 4 (ACSL4). Here, we report the discovery of a photosensitizer, namely TPCI, which can evoke ACSL4-independent ferroptosis of cancer cells in photodynamic therapy. Through co-localization with 12-lipoxygenase (ALOX12) in multiple subcellular organelles, TPCI activates ALOX12 to generate lipid reactive oxygen species in large quantity and trigger cell ferroptosis. Intriguingly, confining TPCI exclusively in lysosomes switches the cell death from ferroptosis to apoptosis. More strikingly, the ferroptosis mediated by TPCI-induced ALOX12 activation does not require the participation of ACSL4. Therefore, our study identifies TPCI as the first ALOX12 activator to induce ferroptosis independent of ACSL4, which renders a viable therapeutic approach on the basis of distinct ferroptosis of cancer cells, regardless their ACSL4 expressions.


Assuntos
Ferroptose , Fármacos Fotossensibilizantes/farmacologia , Coenzima A Ligases/metabolismo , Apoptose , Organelas/metabolismo
16.
Cell Death Discov ; 8(1): 497, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566230

RESUMO

N6-methylation of adenosine (m6A) is one of the most frequent chemical modifications in eukaryotic RNAs and plays a vital role in tumorigenesis and progression. Recently, emerging studies have shown that m6A modification by ALKBH5 was associated with immunotherapy response in various types of cancer. However, whether m6A demethylases ALKBH5 participate in regulating the tumor immune microenvironment and the efficacy of immunotherapy in glioblastoma remain unknown. Here, we found that deletion of ALKBH5 significantly inhibited the growth of glioma allografts, rescued the antitumoral immune response, and increased cytotoxic lymphocyte infiltration and proinflammatory cytokines in CSF while significantly suppressing PD-L1 protein expression. m6A-methylated RNA immunoprecipitation sequencing and RNA sequencing identify ZDDHC3 as the direct target of ALKBH5. Mechanically, ALKBH5 deficiency impairs the YTHDF2-mediated stability of ZDHHC3 mRNA, thereby suppressing PD-L1 expression by accelerating PD-L1 degradation in glioma. In addition, genetic deletion or pharmacological inhibition of ALKBH5 with IOX1 enhances the therapeutic efficacy of anti-PD-1 treatment in preclinical mice models. These data suggest that the combination of anti-PD-1 therapy and ALKBH5 inhibition may be a promising treatment strategy in glioma.

17.
Front Immunol ; 13: 873382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720361

RESUMO

Adiponectin (APN), a fat-derived plasma hormone, is a classic anti-inflammatory agent. Multiple studies have demonstrated the beneficial role of APN in acute brain injury, but the effect of APN in germinal matrix hemorrhage (GMH) is unclear, and the underlying molecular mechanisms remain largely undefined. In the current study, we used a GMH rat model with rh-APN treatment, and we observed that APN demonstrated a protective effect on neurological function and an inhibitory effect on neuroinflammation after GMH. To further explore the underlying mechanisms of these effects, we found that the expression of Adiponectin receptor 1 (AdipoR1) primarily colocalized with microglia and neurons in the brain. Moreover, AdiopR1, but not AdipoR2, was largely increased in GMH rats. Meanwhile, further investigation showed that APN treatment promoted AdipoR1/APPL1-mediated AMPK phosphorylation, further increased peroxisome proliferator-activated receptor gamma (PPARγ) expression, and induced microglial M2 polarization to reduce the neuroinflammation and enhance hematoma resolution in GMH rats. Importantly, either knockdown of AdipoR1, APPL1, or LKB1, or specific inhibition of AMPK/PPARγ signaling in microglia abrogated the protective effect of APN after GMH in rats. In all, we propose that APN works as a potential therapeutic agent to ameliorate the inflammatory response following GMH by enhancing the M2 polarization of microglia via AdipoR1/APPL1/AMPK/PPARγ signaling pathway, ultimately attenuating inflammatory brain injury induced by hemorrhage.


Assuntos
Lesões Encefálicas , Microglia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/metabolismo , Adiponectina/farmacologia , Animais , Animais Recém-Nascidos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Proteínas de Transporte/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , PPAR gama/metabolismo , Ratos , Transdução de Sinais
18.
Artigo em Inglês | MEDLINE | ID: mdl-36301911

RESUMO

Two-dimensional (2D) nanomaterials hold great potential for cancer theranostic applications, yet their clinical translation faces great challenges of high toxicity and limited therapeutic/diagnostic modality. Here, we have created a kind of symbiotic 2D carbon-2D clay nanohybrids, which are composed of a novel 2D carbon nanomaterial (carbon nanochips, or CNC), prepared by carbonizing a conjugated polymer polydiiodobutadiyne, and a 2D layered aluminosilicate clay mineral montmorillonite (MMT). Intriguingly, with the formation of the nanohybrids, MMT can help the dispersion of CNC, while CNC can significantly reduce the hemolysis and toxicity of MMT. The symbiotic combination of CNC and MMT also leads to a synergistic anti-cancer theranostic effect. CNC has a strong absorption and high photothermal conversion efficiency in the second near-infrared region (NIR-II, 1000-1700 nm), while MMT contains Fe3+ that can facilitate the generation of reactive oxygen species from highly expressed H2O2 in tumor microenvironment. The nanohybrids not only enable a synergy of photothermal therapy and chemodynamic therapy to suppress the extremely rapid growth of RM1 tumors in mice but also allow for dual photoacoustic and magnetic imaging to guide the drug delivery and NIR-II irradiation execution, hence establishing a highly efficient and biosafe "all-in-one" theranostic platform for precision nanomedicine.

19.
Acta Pharm Sin B ; 12(7): 3063-3072, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865093

RESUMO

Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the ß 3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.

20.
Front Chem ; 9: 672917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113602

RESUMO

Photodynamic therapy (PDT) is an emerging effective strategy for cancer treatment. Compared with conventional cancer therapies, such as surgery, chemotherapy, and radiotherapy, PDT has shown great promise as a next-generation cancer therapeutic strategy owing to its many advantages such as non-invasiveness, negligible observed drug resistance, localized treatment, and fewer side effects. One of the key elements in photodynamic therapy is the photosensitizer (PS) which converts photons into active cytotoxic species, namely, reactive oxygen species (ROS). An ideal PS for photodynamic therapy requires the efficient generation of ROS, high stability against photo bleaching, and robust performance in different environments and concentrations. PSs with aggregation-induced emission (AIE) characteristics have drawn significant attention, in that they can overcome the aggregation- caused quenching effect that is commonly seen in the case of fluorescence dyes and provide excellent performance at high concentrations or in their condensed state. Moreover, organic nanomaterials with AIE characteristics, or AIE dots, have played an increasingly significant role in assisting PDT based on its excellent ROS generation efficiency and simultaneous imaging feature. This review summarizes the recent advances on the molecular design of AIE PSs and AIE dots-based probes, as well as their emerging applications for enhanced anticancer PDT theranostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA