Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171416, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447715

RESUMO

Textile sludge is a by-product produced during the wastewater treatment process in the textile printing and dyeing industry. Textile sludge is rich in heavy metal elements, which makes it a potential risk to the surrounding environment. This study designs a magnesium oxychloride cement (MOC) components to solidify harmful substances in textile sludge and studies the influence of textile sludge ash (TSA) on the mechanical properties and microstructure of MOC samples. The results indicated that adding 5 %-20 % TSA is beneficial for increasing the compressive strength of air-cured MOC paste and improving its water resistance. Meanwhile, the MOC sample shows volume expansion in 168 h, which is related to the further hydration of residual MgO. Incorporating 10 %-20 % TSA substantially increased the volume expansion ratio of the mixture compared to plain MOC sample. In addition, the porosity of TSA-modified MOC after water curing did not change significantly compared to the sample before water curing, while the pore structure of plain MOC after water curing significantly coarsened. This is mainly because TSA reacts with MOC and generates Mg-Al-Cl-Si-H and Mg-Cl-Si-H gels, consequently improving the water stability of MOC sample. At the nanoscale, the 3/5-phase crystal and unreacted MgO content in the 15 % TSA-modified MOC sample is relatively reduced by 7.79 % and 25 %, respectively, compared to the plain sample, but the 13 % gel phase is detected. In addition, the MOC component can effectively solidify heavy metal elements in textile sludge. For the leachate of 20 % TSA-modified MOC paste, the Ni element is not detected, and its solidifying effect on heavy elements such as Zn and Mn exceeded 99 %.

2.
Sci Total Environ ; 926: 171513, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460695

RESUMO

Drinking water treatment sludge (DWTS) is a by-product of water treatment, and it is difficult to recycle to high value and poses potential environmental risks. Recycling DWTS into cement-based materials is an effective measure to achieve its high-volume utilization and reduce its environmental load. DWTS is rich in silica-alumina phases and has potential pozzolanic activity after drying, grinding and calcination, giving it similar properties to traditional supplementary cementitious materials. Adjusting the sludge production process and coagulant type will change its physical and chemical properties. Adding a small amount of DWTS can generate additional hydration products and refine the pore structure of the cement sample, thus improving the mechanical properties and durability of the sample. However, adding high-volume DWTS to concrete causes microstructural deterioration, but it is feasible to use high-volume DWTS to produce artificial aggregates, lightweight concrete, and sintered bricks. Meanwhile, calcined DWTS has similar compositions to clay, which makes it a potential raw material for cement clinker production. Cement-based materials can effectively solidify heavy metal ions in DWTS, and alkali-activated binders, magnesium-based cement, and carbon curing technology can further reduce the risk of heavy metal leaching. This review provides support for the high-value utilization of DWTS in cement-based materials and the reduction of its potential environmental risks.

3.
Environ Sci Pollut Res Int ; 31(4): 6094-6105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147256

RESUMO

Fluroxypyr-meptyl (FLUME) is heterocyclic herbicide with internal absorption and transmission characteristics. Owing to its low cost and rapid efficacy, it has been widely used to control broad-leaved weeds in wheat, corn, and rice fields. However, the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings and the extent of oxidative stress induced by it remain largely unknown, which consequently restricts the comprehensive risk assessment of FLUME residues in the environment during rice production. Hence, we systematically investigated the growth and physiological responses of rice to FLUME and analyzed its uptake, translocation, accumulation, and metabolism in rice seedlings. The results indicated that under 0-0.12 mg/L FLUME treatment, only a small proportion of FLUME was translocated upward and accumulated in rice shoots following absorption via roots, with all the translocation factor values being < 1. Moreover, the distribution and enrichment ability of FLUME in rice seedlings were greater in roots than in shoots. Furthermore, we revealed that FLUME accumulation in rice seedlings evidently inhibited their growth and activated the defense system against oxidative stress, with an increase in the activity of antioxidant and detoxifying enzymes. In addition, multiple metabolic reactions of FLUME were observed in rice seedlings, including dehalogenation, hydroxylation, glycosylation, acetylation, and malonylation. Our study provides systematic insights into the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings as well as the oxidative stress induced by FLUME accumulation, which can help improve FLUME applications and environmental risk assessments in crops.


Assuntos
Oryza , Plântula , Plântula/metabolismo , Oryza/química , Glicolatos/análise , Glicolatos/metabolismo , Estresse Oxidativo , Raízes de Plantas/química
4.
One Health ; 18: 100735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711479

RESUMO

Background: Borrelia miyamotoi is a spirochete species transmitted via hard ticks. Following its discovery in Japan, this pathogen has been detected around the world, and is increasingly confirmed as a human pathogen causing febrile disease, namely relapsing fever. Its presence has been confirmed in the Northeast China. However, there is little information regarding the presence of B. miyamotoi and other hard-tick-borne relapsing fever spirochetes in southern China including Yunnan province, where tick and animal species are abundant and many people both inhabit and visit for recreation. Methods: For the present study, we collected samples of ticks, wildlife, and domestic animal hosts from different counties in Yunnan province. Nucleic acids from samples were extracted, and the presence of B. miyamotoi and other relapsing fever spirochetes was confirmed using polymerase chain reaction (PCR) for the 16S rRNA specific target gene fragment. The positive samples were then amplified for partial genome of the flaB and glpQ genes. Statistical differences in its distribution were analyzed by SPSS 20 software. Sequence of partial 16S rRNA, flaB and glpQ genome were analyzed and phylogenetic trees were constructed. Results: A total of 8260 samples including 2304 ticks, 4120 small mammals and 1836 blood of domestic animal hosts were collected for screening for infection of B. miyamotoi and other relapsing fever spirochetes. Cattle and sheep act as the main hosts and Rhipicephalus microplus, Haemaphysalis nepalensis, H. kolonini and Ixodes ovatus were identified as the important vector host with high prevalence or wide distribution. Only one Mus caroli (mouse) and one Sorex alpinus (shrew) were confirmed positive for relapsing fever spirochetes. Evidence of vertical transmission in ticks was also confirmed. Two known strains of B. miyamotoi and one novel relapsing fever spirochetes, B. theileri-like agent, were confirmed and described with their host adaptation, mutation, and potential risk of spreading and spillover for human beings. Conclusions: Our results provide new evidence of relapsing fever spirochetes in vector and animal hosts in Yunnan province based on large sample sizes, and offer guidance on further investigation, surveillance and monitoring of this pathogen.

5.
Infect Dis Poverty ; 13(1): 54, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982550

RESUMO

BACKGROUND: Rickettsia and related diseases have been identified as significant global public health threats. This study involved comprehensive field and systematic investigations of various rickettsial organisms in Yunnan Province. METHODS: Between May 18, 2011 and November 23, 2020, field investigations were conducted across 42 counties in Yunnan Province, China, encompassing small mammals, livestock, and ticks. Preliminary screenings for Rickettsiales involved amplifying the 16S rRNA genes, along with additional genus- or species-specific genes, which were subsequently confirmed through sequencing results. Sequence comparisons were carried out using the Basic Local Alignment Search Tool (BLAST). Phylogenetic relationships were analyzed using the default parameters in the Molecular Evolutionary Genetics Analysis (MEGA) program. The chi-squared test was used to assess the diversities and component ratios of rickettsial agents across various parameters. RESULTS: A total of 7964 samples were collected from small mammals, livestock, and ticks through Yunnan Province and submitted for screening for rickettsial organisms. Sixteen rickettsial species from the genera Rickettsia, Anaplasma, Ehrlichia, Neoehrlichia, and Wolbachia were detected, with an overall prevalence of 14.72%. Among these, 11 species were identified as pathogens or potential pathogens to humans and livestock. Specifically, 10 rickettsial organisms were widely found in 42.11% (24 out of 57) of small mammal species. High prevalence was observed in Dremomys samples at 5.60%, in samples from regions with latitudes above 4000 m or alpine meadows, and in those obtained from Yuanmou County. Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis were broadly infecting multiple genera of animal hosts. In contrast, the small mammal genera Neodon, Dremomys, Ochotona, Anourosorex, and Mus were carrying individually specific rickettsial agents, indicating host tropism. There were 13 rickettsial species detected in 57.14% (8 out of 14) of tick species, with the highest prevalence (37.07%) observed in the genus Rhipicephalus. Eight rickettsial species were identified in 2375 livestock samples. Notably, six new Rickettsiales variants/strains were discovered, and Candidatus Rickettsia longicornii was unambiguously identified. CONCLUSIONS: This large-scale survey provided further insight into the high genetic diversity and overall prevalence of emerging Rickettsiales within endemic hotspots in Yunnan Province. The potential threats posed by these emerging tick-borne Rickettsiales to public health warrant attention, underscoring the need for effective strategies to guide the prevention and control of emerging zoonotic diseases in China.


Assuntos
Variação Genética , Filogenia , Rickettsiales , Carrapatos , China/epidemiologia , Animais , Prevalência , Rickettsiales/genética , Rickettsiales/isolamento & purificação , Rickettsiales/classificação , Carrapatos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Gado/microbiologia , Infecções por Rickettsia/epidemiologia , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/veterinária , Rickettsia/isolamento & purificação , Rickettsia/genética , Rickettsia/classificação , Mamíferos/microbiologia , Humanos
6.
Sci Total Environ ; 873: 162456, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842600

RESUMO

For eutrophic water bodies, potassium permanganate is an effective pre-oxidant to remove algae and its residue in water treatment sludge. Recycling water treatment sludge in concrete is an environmentally friendly and high-value utilization measure. However, little research has been done on the effect of manganese-rich drinking water sludge ash (DWSA) on concrete. The effect of water-binder ratio (w/b) on strength, shrinkage and microstructural characteristics of concrete containing DWSA was investigated, and the structural behavior was explained from a nanoscale perspective. The results show that recycling 10 % DWSA in concrete improved the strength and shrinkage resistance of the samples. Reducing the w/b effectively increased the strength of DWSA-modified concrete and reduced the shrinkage deformation. The paste with high w/b had higher contents of non-evaporated water and calcium hydroxide, as well as higher reaction degree of DWSA. Nanoscale characterization shows that reducing the w/b reduced the volume fraction of pore and unhydrated phases in the matrix and increased the proportion of high-density C-S-H. Meanwhile, reducing the w/b also reduced the interfacial transition zone width of DWSA-modified concrete. Recycling DWSA in concrete effectively reduced the total carbon footprint and cost of the mixture. The combined application of reducing the w/b and incorporating DWSA effectively improved the economic and environmental benefits of concrete material. For the concrete modified with 10 % DWSA (w/b = 0.3), its cost and carbon emissions are reduced by 14 %-21 % and 19 %-25 % compared with the reference sample, respectively. Overall, this study reveals the action mechanism of DWSA in cement system at different w/b from nanoscale perspective, and gives a new insight on determining the optimal w/b in full-scale application of DWSA concrete.

7.
Sci Total Environ ; 836: 155424, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35504383

RESUMO

On islands far away from the mainland, the raw materials for concrete production are often more difficult to obtain. Converting the coral waste generated during the island construction process into a marine ultra-high performance concrete (UHPC) mixture is an eco-friendly strategy. Coral powder (CP) is used to partially replace cement and silica fume (SF), and its mechanical strength, microstructure and environmental benefits are evaluated. Results show that using a small amount of CP (5%) to replace cement can improve the mechanical properties of UHPC, but the strength of UHPC decreases with the further increase of CP content. From the perspective of nanoindentation test, an appropriate amount of CP refines the pore structure of the UHPC matrix and increases the content of C-S-H, especially the proportion of high-density C-S-H. When 15% of SF is replaced by CP (SF15), the strength of UHPC decreases due to the decrease of C-S-H phase and the deterioration of microstructure. In terms of the width of the interface transition zone, the width of the C5 sample (CP replace 5% cement) is decreased by 16.7% compared with the control group, while the width of the SF15 group is increased by 38.9%. Compared with conventional UHPC, CP-based UHPC has lower carbon emission and non-renewable energy consumption, which effectively utilizes waste and promotes sustainability.


Assuntos
Antozoários , Materiais de Construção , Animais , Pós , Reciclagem , Dióxido de Silício
8.
Microbiol Spectr ; 10(5): e0232322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173317

RESUMO

Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses. There is an ongoing debate as to whether established infections by one Rickettsia species preclude the maintenance of the second species in ticks. Here, we identified two Rickettsia species in inoculum from Haemaphysalis montgomeryi ticks and subsequently obtained pure isolates of each species by plaque selection. The two isolates were classified as a transitional group and spotted fever group rickettsiae and named Rickettsia hoogstraalii str CS and Rickettsia rhipicephalii str EH, respectively. The coinfection of these two Rickettsia species was detected in 25.6% of individual field-collected H. montgomeryi. In cell culture infection models, R. hoogstraalii str CS overwhelmed R. rhipicephalii str EH with more obvious cytopathic effects, faster plaque formation, and increased cellular growth when cocultured, and R. hoogstraalii str CS seemed to polymerize actin tails differently from R. rhipicephalii str EH in vitro. This work provides a model to investigate the mechanisms of both Rickettsia-Rickettsia and Rickettsia-vector interactions. IMPORTANCE The rickettsiae are a group of obligate intracellular Gram-negative bacteria that include human pathogens causing an array of clinical symptoms and even death. There is an important question in the field, that is whether one infection can block the superinfection of other rickettsiae. This work demonstrated the coinfection of two Rickettsia species in individual ticks and further highlighted that testing the rickettsial competitive exclusion hypothesis will undoubtedly be a promising area as methods for bioengineering and pathogen biocontrol become amenable for rickettsiae.


Assuntos
Coinfecção , Ixodidae , Rickettsia , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Actinas , Rickettsia/genética , Ixodidae/microbiologia
9.
J Hazard Mater ; 353: 35-43, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29631045

RESUMO

Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA