RESUMO
Lactic acid bacteria (LAB), a type of microorganism widely used in functional foods, has gained notable research attention in recent years. Certain strains possess the proteolytic ability to release potentially antihypertensive peptides from dairy proteins, which prompted us to explore the LAB strains from an understudied and unique ingredient, Daqu. We screened for 67 strains of LAB strains from traditional Daqu using the calcium dissolution ring method. Sixteen strains exhibiting angiotensin-converting enzyme inhibition (ACE-I) activity exceeding 50% were chosen for 16S rDNA sequencing and safety assessment. It is noteworthy that Enterococcus faecium CP640 and Lacticaseibacillus rhamnosus CP658 exhibited significant ACE-I activity, which was the result of strain fermentation in reconstituted skim milk. These 2 strains did not exhibit hemolytic activity or antibiotic resistance. They also did not produce biogenic amines and showed high survival rates in the gastrointestinal tract. Additionally, Enterococcus faecium CP640 and Lacticaseibacillus rhamnosus CP658 fermented milk exhibited a notable reduction in blood pressure levels in spontaneously hypertensive rats (SHR) compared with negative controls in SHR. Importantly, no adverse effect was observed in normal Wistar-Kyoto rats. Through the analysis of physiological, serum, and urine-related indicators, it was observed that Enterococcus faecium CP640 and Lacticaseibacillus rhamnosus CP658 have the potential to promote weight gain in SHR, alleviate excessive heart rate, improve renal function indicators, and effectively regulate blood sugar and uric acid levels in SHR. These 2 strains showed optimal properties in lowering blood pressure and have the potential to be used in functional dairy products in the future.
Assuntos
Enterococcus faecium , Hipertensão , Lacticaseibacillus rhamnosus , Lactobacillales , Animais , Ratos , Anti-Hipertensivos/análise , Fermentação , Hipertensão/tratamento farmacológico , Hipertensão/veterinária , Leite/química , Ratos Endogâmicos SHR , Ratos Endogâmicos WKYRESUMO
By examining and analyzing bran-free fermented Baijiu (BFB) with varying storage periods (0-20 years), it was observed that the overall concentration of volatile compounds initially increases and subsequently decreases over time. Furthermore, BFB exhibited more kinds of long chain esters, higher concentration of acetals, and reduced furfural content. The process of cellaring can enhance the aged, sweet, and fruity aroma of BFB. 16 flavor compounds, including 1,1-diethoxyethane, ethyl dodecanoate, and ethyl hexadecanoate, can be used as markers for vintage BFB, and electronic sensory technology was capable of discerning BFB in different years. The results of redundancy analysis (RDA) showed a positive correlation between metals and aldehydes, esters, and ketones, while indicating a negative correlation with acids and alcohols. Al, Fe, and Ca underwent the most significant changes during storage period, and they were positively correlated with differential substances, such as benzaldehyde, vanillin, ethyl isovalerate, and ethyl palmitate (P < 0.01).
RESUMO
Different spatial positions lead to inconsistent fermentation effects and flavors, however, the spatial heterogeneity of Qingxiangxing (QXX) Baijiu remains unknown. We investigated the microbes, flavors, and physicochemical properties of different layers in fermented grains of QXX Baijiu using Illumina HiSeq sequencing, two-dimensional gas chromatography-mass spectrometry (GC × GC-MS) and ultra-high performance liquid chromatography-mass (UHPLC-MS). A total of 79 volatiles, 1596 metabolites, 50 bacterial genera, and 52 fungal genera were identified. The contents distribution followed the order: upper layer > bottom layer > middle layer. Organic acids and derivatives were the main differential metabolites across the three layers. Starch, pH, and reducing sugar levels increased from the upper to bottom layer. Saccharomyces and Lactobacillus were dominant microbes. Pediococcus, the biomarker of upper layer, showed positive correlations with formic acid, ethyl lactate, acetic acid, ethyl linoleate, and ethyl oleate. These findings deepen our understanding of the fermentation and flavor formation mechanisms of QXX Baijiu.
RESUMO
This study aims to sequence the whole genome of Pediococcus ethanolidurans CP201 isolated from Daqu and determine the anti-corrosion ability of bacteriocins on chicken breast. The whole genome sequence information of P. ethanolidurans CP201 was analyzed, and its gene structure and function were explored. It was found that gene1164 had annotations in the NR, Pfam, and Swiss-Prot databases, and was related to bacteriocins. The exogenous expression of the bacteriocin gene Pediocin PE-201 was analyzed based on the pET-21b vector and the host BL21, and the corresponding bacteriocin was successfully expressed under the induction of IPTG. After purification by NI-NTA column, enterokinase treatment, membrane dialysis concentration treatment, and SDS-PAGE electrophoresis, the molecular weight was about 6.5 kDa and the purity was above 90%. By applying different concentrations of bacteriocin to chicken breast with different levels of contamination, the control of pathogenic bacteria, the ordinary contamination level (OC) group, and the high contamination level (MC) group could be completely achieved with 25 mg/L bacteriocin. In conclusion, the bacteriocin produced by the newly isolated CP201 can be applied to the preservation of meat products to prevent the risk of food-borne diseases.
Assuntos
Bacteriocinas , Bacteriocinas/genética , Diálise Renal , Pediococcus/genética , Pediococcus/metabolismo , Eletroforese em Gel de Poliacrilamida , Sequenciamento Completo do GenomaRESUMO
Ethyl hexanoate and ethyl butyrate are essential to the flavor compounds in Nongxiangxing baijiu, but low levels of these two esters in upper fermented grains (FG) decreases the quality of upper distilled baijiu, representing the main challenge in Nongxiangxing baijiu production. This paper enhanced fermentation by inoculating functional Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis strains into upper FG. The results showed that the ethyl butyrate content in the upper FG increased significantly and the content of ethyl hexanoate did improve from the results of many determinations. High-throughput sequencing indicated that the dominant phyla in the FG were Firmicutes, Actinobacteriota, Proteobacteria, Ascomycota, and Basidiomycota. The canonical correspondence analysis (CCA) and person correlation network revealed the relationship between the microbial community, physicochemical environment, and flavor compounds. The temperature, oxygen, and acidity were closely related to the microbial community, while most flavor compounds were positively correlated with Caldicoprobacter, Caproiciproducens, Delftia, Hydrogenispora, Thermoactinomyces, Issatchenkia Bacillus, and Aspergillus. These results helped improve the quality of Nongxiangxing baijiu.