RESUMO
PURPOSE: To describe our experiences implementing and iterating CYP2C19 genotype-guided clopidogrel pharmacogenetic clinical decision support (CDS) tools over time in the setting of a large health system-wide, preemptive pharmacogenomics program. SUMMARY: Clopidogrel-treated patients who are genetically predicted cytochrome P450 isozyme 2C19 (CYP2C19) intermediate or poor metabolizers have an increased risk of atherothrombotic events, some of which can be life-threatening. The Clinical Pharmacogenetics Implementation Consortium provides guidance for the use of clopidogrel based on CYP2C19 genotype in patients with cardiovascular and cerebrovascular diseases. Our multidisciplinary team implemented an automated, interruptive alert that fires when clopidogrel is ordered or refilled for biobank participants with structured CYP2C19 intermediate or poor metabolizer genomic indicators in the electronic health record. The implementation began with a narrow cardiovascular indication and setting and was then scaled in 4 primary dimensions: (1) clinical indication; (2) availability across health-system locations; (3) care venue (e.g., inpatient vs outpatient); and (4) provider groups (eg, cardiology and neurology). We iterated our approach over time based on evolving clinical evidence and proactive strategies to optimize CDS maintenance and sustainability. A key facilitator of expansion was socialization of the broader pharmacogenomics initiative among our academic medical center community, accompanied by clinician acceptance of pharmacogenetic alerts in practice. CONCLUSION: A multidisciplinary collaboration is recommended to facilitate the use of CYP2C19 genotype-guided antiplatelet therapy in patients with cardiovascular and cerebrovascular diseases. Evolving clopidogrel pharmacogenetic evidence necessitates thoughtful iteration of implementation efforts and strategies to optimize long-term maintenance and sustainability.
Assuntos
Clopidogrel , Citocromo P-450 CYP2C19 , Sistemas de Apoio a Decisões Clínicas , Farmacogenética , Inibidores da Agregação Plaquetária , Humanos , Clopidogrel/uso terapêutico , Citocromo P-450 CYP2C19/genética , Inibidores da Agregação Plaquetária/uso terapêutico , Farmacogenética/métodos , Genótipo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Registros Eletrônicos de SaúdeRESUMO
In recent years, the genomics community has witnessed the growth of large research biobanks, which collect DNA samples for research purposes. Depending on how and where the samples are genotyped, biobanks also offer the potential opportunity to return actionable genomic results to the clinical setting. We developed a preemptive clinical pharmacogenomic implementation initiative via a health system-wide research biobank at the University of Colorado. Here, we describe how preemptive return of clinical pharmacogenomic results via a research biobank is feasible, particularly when coupled with strong institutional support to maximize the impact and efficiency of biobank resources, a multidisciplinary implementation team, automated clinical decision support tools, and proactive strategies to engage stakeholders early in the clinical decision support tool development process.