Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Sci ; 46: e415, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054298

RESUMO

On several key issues we agree with the commentators. Perhaps most importantly, everyone seems to agree that psychology has an important role to play in building better models of human vision, and (most) everyone agrees (including us) that deep neural networks (DNNs) will play an important role in modelling human vision going forward. But there are also disagreements about what models are for, how DNN-human correspondences should be evaluated, the value of alternative modelling approaches, and impact of marketing hype in the literature. In our view, these latter issues are contributing to many unjustified claims regarding DNN-human correspondences in vision and other domains of cognition. We explore all these issues in this response.


Assuntos
Cognição , Redes Neurais de Computação , Humanos
2.
Behav Brain Sci ; 46: e385, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453586

RESUMO

Deep neural networks (DNNs) have had extraordinary successes in classifying photographic images of objects and are often described as the best models of biological vision. This conclusion is largely based on three sets of findings: (1) DNNs are more accurate than any other model in classifying images taken from various datasets, (2) DNNs do the best job in predicting the pattern of human errors in classifying objects taken from various behavioral datasets, and (3) DNNs do the best job in predicting brain signals in response to images taken from various brain datasets (e.g., single cell responses or fMRI data). However, these behavioral and brain datasets do not test hypotheses regarding what features are contributing to good predictions and we show that the predictions may be mediated by DNNs that share little overlap with biological vision. More problematically, we show that DNNs account for almost no results from psychological research. This contradicts the common claim that DNNs are good, let alone the best, models of human object recognition. We argue that theorists interested in developing biologically plausible models of human vision need to direct their attention to explaining psychological findings. More generally, theorists need to build models that explain the results of experiments that manipulate independent variables designed to test hypotheses rather than compete on making the best predictions. We conclude by briefly summarizing various promising modeling approaches that focus on psychological data.


Assuntos
Redes Neurais de Computação , Percepção Visual , Humanos , Percepção Visual/fisiologia , Visão Ocular , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA