Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(4): 1924-1941, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170860

RESUMO

Skin wound healing is a complex physiological process that involves various cell types, growth factors, cytokines, and other bioactive compounds. In this study, a novel dual-function multilayered nanofibrous membrane is developed for chronic wound application. The membrane is composed of five alternating layers of polycaprolactone (PCL) and poly (vinyl alcohol) (PVA) nanofibers (PCL-PVA) with a dual function: the PCL nanofibrous layers allow cell adhesion and growth, and the PVA layers enriched with incorporated platelet lysate (PCL-PVA + PL) serve as a drug delivery system for continuous release of bioactive compounds from PL into an aqueous environment. The material is produced using a needleless multi-jet electrospinning approach which can lead to homogeneous large-scale production. The bioactive PCL-PVA + PL membranes are cytocompatible and hemocompatible. A spatially compartmented co-culture of three cell types involved in wound healing - keratinocytes, fibroblasts and endothelial cells - is used for cytocompatibility studies. PCL-PVA + PL membranes enhance the proliferation of all cell types and increase the migration of both fibroblasts and endothelial cells. The membranes are also hemocompatible without any deleterious effect for thrombogenicity, hemolysis and coagulation. Thus, the beneficial effect of the PCL-PVA + PL membrane is demonstrated in vitro, making it a promising scaffold for the treatment of chronic wounds.


Assuntos
Nanofibras , Células Endoteliais , Cicatrização , Poliésteres/farmacologia , Etanol , Álcool de Polivinil , Antibacterianos/farmacologia
2.
Polymers (Basel) ; 16(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674949

RESUMO

The use of electrospun polymeric biodegradable materials for medical applications is becoming increasingly widespread. One of the most important parameters regarding the functionality of nanofiber scaffolds during implantation and the subsequent regeneration of damaged tissues concerns their stability and degradation behavior, both of which are influenced by a wide range of factors (the properties of the polymer and the polymer solution, the technological processing approach, the sterilization method, etc.). This study monitored the degradation of nanofibrous materials fabricated from degradable polyesters as a result of the sterilization method applied (ethylene oxide and gamma irradiation) and the solvent system used to prepare the spun polymer solution. Aliphatic polyesters PCL and PLCL were chosen for this study and selected with respect to the applicability and handling in the surgical setting of these nanofibrous materials for vascular bandaging. The results revealed that the choice of solvent system exerts a significant impact on degradation during sterilization, especially at higher gamma irradiation values. The subsequent enzyme-catalyzed degradation of the materials following sterilization indicated that the choice of the sterilization method influenced the degradation behavior of the materials. Whereas wave-like degradation was evident concerning ethylene oxide sterilization, no such behavior was observed following gamma-irradiation sterilization. With concern for some of the tested materials, the results also indicated the potential for influencing the development of degradation within the bulk versus degradation from the surface of the material. Both the sterilization method and the choice of the spinning solvent system were found to impact degradation, which was observed to be most accelerated in the case of PLCL (L-lactide-co-caprolactone copolymer) electrospun from organic acids and subsequently sterilized using gamma irradiation. Since we planned to use these materials in cardiovascular applications, it was decided that their hemocompatibility would also be tested. The results of these tests revealed that changes in the structures of the materials initiated by sterilization may exert thrombogenic and anticoagulant impacts. Moreover, the microscopic analysis suggested that the solvent system used in the preparation of the materials potentially affects the behavior of erythrocytes; however, no indication of the occurrence of hemolysis was detected.

3.
Biomed Phys Eng Express ; 6(2): 025012, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33438638

RESUMO

Polycaprolactone (PCL) was electrospun with the addition of arginine (Arg), an α-amino acid that accelerates the healing process. The efficient needleless electrospinning technique was used for the fabrication of the nanofibrous layers. The materials produced consisted mainly of fibers with diameters of between 200 and 400 nm. Moreover, both microfibers and beads were present within the layers. Higher bead sizes were observed with the increased addition of arginine. The arginine content within the layers as well as the weight of the resultant electrospun materials were enhanced with the increased addition of arginine to the electrospinning solution (1, 5 and 10 wt%). The PCL + 1% Arg nanofibrous layer contained 5.67 ± 0.04% of arginine, the PCL + 5% Arg layer 22.66 ± 0.24% of arginine and the PCL + 10% Arg layer 37.33 ± 0.39% of arginine according to the results of the elemental analysis. A high burst release within 5 h of soaking was recorded for the PCL + 5% and PCL + 10% nanofibrous layers. However, the release rate of arginine from the PCL + 1% Arg was significantly slower, reaching a maximum level after 72 h of soaking. The resulting materials were hydrophobic. Hemocompatibility testing under static conditions revealed no effect on hemolysis following the addition of arginine and the prolongation of the prothrombin time with the increased addition of arginine, thus exerting an influence on the extrinsic and common pathway of coagulation activation. The results of the dynamic hemocompatibility assessment revealed that the numbers of blood cells and platelets were not affected significantly by the various electrospun samples during incubation. The TAT, ß-thromboglobulin and SC5-b9 concentrations were characterized by a moderate increase in the PCL group compared to those of the control group. The presence of arginine resulted in a decrease in the investigated hemocompatibility markers. The PMN elastase levels were comparable with respect to all the groups.


Assuntos
Arginina/química , Hemólise , Teste de Materiais/métodos , Poliésteres/química , Alicerces Teciduais/química , Cicatrização , Materiais Biocompatíveis/química , Eletricidade , Humanos , Nanofibras/química , Tempo de Protrombina , Engenharia Tecidual
4.
Mater Sci Eng C Mater Biol Appl ; 82: 330-335, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025666

RESUMO

Biodegradable polyesters, namely polycaprolactone (PCL) and copolymer of polylactide and polycaprolactone (PLCL) were electrospun into various fibrous structures and their hemocompatibility was evaluated in vitro. Firstly, hemolytic effect was evaluated upon incubation with diluted whole blood. The results showed that the degree of hemolysis depended on chemical composition and fibrous morphology. Electrospun polycaprolactone induced slight degree of hemolysis depending on its molecular weight and fibrous morphology; copolymer PLCL did not cause detectable hemolysis. The influence of coagulation pathways was examined by measurement of coagulation times. It was showed that intrinsic coagulation pathway assessed by activated partial thromboplastin time (APTT) was moderately accelerated after incubation with PCL and prolonged after incubation with copolymer PLCL. Extrinsic activation of coagulation tested by prothrombin time (PT) was slightly accelerated after incubation with all tested electrospun samples. Thrombogenicity assessment of fibrous samples revealed high thrombogenic properties of fibrous materials that was comparable to high degree of collagen thrombogenicity. The level of platelet activation was dependent on chemical composition and surface morphology of tested materials.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Colágeno/química , Hemólise/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Tempo de Tromboplastina Parcial , Poliésteres/química , Polímeros/síntese química , Tempo de Protrombina
5.
FEBS Lett ; 580(10): 2471-6, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16638573

RESUMO

1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (OMPC, edelfosine) and 1-hexadecylphosphocholine (HePC, miltefosine) represent two groups of synthetic ether lipid analogues with anti-tumor activity. Because of their hydrophobic nature, they may become incorporated into plasma membranes of cells, and it has been argued that they may act via association with lipid rafts. With the quenching of steady-state fluorescence of probes preferentially partitioning into sterol-rich ordered domains (cholestatrienol and trans-parinaric acid), we showed that OMPC and HePC by themselves did not form sterol-rich domains in fluid model membranes, in contrast to the two chain ether lipid 1,2-O-dihexadecyl-sn-glycero-3-phosphocholine. Nevertheless, all three ether lipids significantly stabilized palmitoyl-sphingomyelin/cholesterol-rich domains against temperature induced melting. In conclusion, this study shows that anti-tumor ether lipids are likely to affect the properties of cholesterol-sphingomyelin domains (i.e., lipid rafts) when incorporated into cell membranes.


Assuntos
Antineoplásicos/farmacologia , Membranas Artificiais , Éteres Fosfolipídicos/farmacologia , Varredura Diferencial de Calorimetria , Fluorescência , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA