RESUMO
In 1916, Ricca hypothesized that plant defense mediators are transported by xylem vessels. While it was discovered that electrical waves generated at plant wounds also transmit information over great distances, the molecular nature of the so-called Ricca factor remained unclear. In this issue of Cell, Gao et al. identify thioglucoside glucohydrolases as a Ricca factor in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Herbivoria , Plantas , Proteínas de Arabidopsis/genética , XilemaRESUMO
Land plants evolved from charophytic algae, among which Charophyceae possess the most complex body plans. We present the genome of Chara braunii; comparison of the genome to those of land plants identified evolutionary novelties for plant terrestrialization and land plant heritage genes. C. braunii employs unique xylan synthases for cell wall biosynthesis, a phragmoplast (cell separation) mechanism similar to that of land plants, and many phytohormones. C. braunii plastids are controlled via land-plant-like retrograde signaling, and transcriptional regulation is more elaborate than in other algae. The morphological complexity of this organism may result from expanded gene families, with three cases of particular note: genes effecting tolerance to reactive oxygen species (ROS), LysM receptor-like kinases, and transcription factors (TFs). Transcriptomic analysis of sexual reproductive structures reveals intricate control by TFs, activity of the ROS gene network, and the ancestral use of plant-like storage and stress protection proteins in the zygote.
Assuntos
Chara/genética , Genoma de Planta , Evolução Biológica , Parede Celular/metabolismo , Chara/crescimento & desenvolvimento , Embriófitas/genética , Redes Reguladoras de Genes , Pentosiltransferases/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Channelrhodopsins , Luz , Optogenética , Ânions/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Cálcio/metabolismo , Sinalização do Cálcio/efeitos da radiação , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Citosol/metabolismo , Secas , Condutividade Elétrica , Transporte de Íons/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiaçãoRESUMO
Perception of biotic and abiotic stresses often leads to stomatal closure in plants1,2. Rapid influx of calcium ions (Ca2+) across the plasma membrane has an important role in this response, but the identity of the Ca2+ channels involved has remained elusive3,4. Here we report that the Arabidopsis thaliana Ca2+-permeable channel OSCA1.3 controls stomatal closure during immune signalling. OSCA1.3 is rapidly phosphorylated upon perception of pathogen-associated molecular patterns (PAMPs). Biochemical and quantitative phosphoproteomics analyses reveal that the immune receptor-associated cytosolic kinase BIK1 interacts with and phosphorylates the N-terminal cytosolic loop of OSCA1.3 within minutes of treatment with the peptidic PAMP flg22, which is derived from bacterial flagellin. Genetic and electrophysiological data reveal that OSCA1.3 is permeable to Ca2+, and that BIK1-mediated phosphorylation on its N terminus increases this channel activity. Notably, OSCA1.3 and its phosphorylation by BIK1 are critical for stomatal closure during immune signalling, and OSCA1.3 does not regulate stomatal closure upon perception of abscisic acid-a plant hormone associated with abiotic stresses. This study thus identifies a plant Ca2+ channel and its activation mechanisms underlying stomatal closure during immune signalling, and suggests specificity in Ca2+ influx mechanisms in response to different stresses.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Imunidade Vegetal , Estômatos de Plantas/imunologia , Estômatos de Plantas/metabolismo , Ácido Abscísico/metabolismo , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de SinaisRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.
Assuntos
Beta vulgaris , Glucose , Proteínas de Plantas , Raízes de Plantas , Sacarose , Animais , Beta vulgaris/citologia , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Prótons , Sacarose/metabolismo , Xenopus laevisRESUMO
Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.
Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte BiológicoRESUMO
Voltage-gated ion channels confer excitability to biological membranes, initiating and propagating electrical signals across large distances on short timescales. Membrane excitation requires channels that respond to changes in electric field and couple the transmembrane voltage to gating of a central pore. To address the mechanism of this process in a voltage-gated ion channel, we determined structures of the plant two-pore channel 1 at different stages along its activation coordinate. These high-resolution structures of activation intermediates, when compared with the resting-state structure, portray a mechanism in which the voltage-sensing domain undergoes dilation and in-membrane plane rotation about the gating charge-bearing helix, followed by charge translocation across the charge transfer seal. These structures, in concert with patch-clamp electrophysiology, show that residues in the pore mouth sense inhibitory Ca2+ and are allosterically coupled to the voltage sensor. These conformational changes provide insight into the mechanism of voltage-sensor domain activation in which activation occurs vectorially over a series of elementary steps.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Proteínas de Arabidopsis/química , Cálcio/metabolismo , Microscopia Crioeletrônica , Ativação do Canal Iônico , Ligantes , Conformação ProteicaRESUMO
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Assuntos
Células Vegetais , Estômatos de Plantas , Membrana Celular/metabolismo , Transporte de Íons , Homeostase , Concentração de Íons de Hidrogênio , Estômatos de Plantas/metabolismoRESUMO
γ-Aminobutyric acid (GABA) accumulates rapidly under stress via the GABA shunt pathway, which has been implicated in reducing the accumulation of stress-induced reactive oxygen species (ROS) in plants. γ-Aminobutyric acid has been demonstrated to act as a guard-cell signal in Arabidopsis thaliana, modulating stomatal opening. Knockout of the major GABA synthesis enzyme Glutamate Decarboxylase 2 (GAD2) increases the aperture of gad2 mutants, which results in greater stomatal conductance and reduces water-use efficiency compared with wild-type plants. Here, we found that the additional loss of GAD1, GAD4, and GAD5 in gad2 leaves increased GABA deficiency but abolished the more open stomatal pore phenotype of gad2, which we link to increased cytosolic calcium (Ca2+ ) and ROS accumulation in gad1/2/4/5 guard cells. Compared with wild-type and gad2 plants, glutamate was ineffective in closing gad1/2/4/5 stomatal pores, whereas lowering apoplastic calcium, applying ROS inhibitors or complementation with GAD2 reduced gad1/2/4/5 guard-cell ROS, restored the gad2-like greater stomatal apertures of gad1/2/4/5 beyond that of wild-type. We conclude that GADs are important contributors to ROS homeostasis in guard cells likely via a Ca2+ -mediated pathway. As such, this study reveals greater complexity in GABA's role as a guard-cell signal and the interactions it has with other established signals.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Estômatos de Plantas , Ácido gama-Aminobutírico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Homeostase , Ácido Abscísico/metabolismoRESUMO
The evolution of adjustable stomatal pores, enabling CO2 acquisition, was one of the most significant events in the development of life on land. Here, we investigate how the guard cell signalling pathways that regulate stomatal movements evolved. We compare fern and angiosperm guard cell transcriptomes and physiological responses, and examine the functionality of ion channels from diverse plant species. We find that, despite conserved expression in guard cells, fern anion channels from the SLAC/SLAH family are not activated by the same abscisic acid (ABA) pathways that provoke stomatal closure in angiosperms. Accordingly, we find an insensitivity of fern stomata to ABA. Moreover, our analysis points to a complex evolutionary history, featuring multiple gains and/or losses of SLAC activation mechanisms, as these channels were recruited to a role in stomatal closure. Our results show that the guard cells of flowering and nonflowering plants share similar core features, with lineage-specific and ecological niche-related adaptations, likely underlying differences in behaviour.
RESUMO
Optimal stomatal regulation is important for plant adaptation to changing environmental conditions and for maintaining crop yield. The guard-cell signal GABA is produced from glutamate by Glutamate Decarboxylase (GAD) during a reaction that generates carbon dioxide (CO2) as a by-product. Here, we investigated a putative connection between GABA signalling and the more clearly defined CO2 signalling pathway in guard cells. The GABA-deficient mutant lines gad2-1, gad2-2 and gad1/2/4/5 were examined for stomatal sensitivity to various CO2 concentrations. Our findings show a phenotypical discrepancy between the allelic mutant lines gad2-1 and gad2-2 - a weakened CO2 response in gad2-1 (GABI_474_E05) in contrast to a wild-type response in gad2-2 (SALK_028819) and gad1/2/4/5. Through transcriptomic and genomic investigation, we traced the response of gad2-1 to a deletion of full-length Mitogen-activated protein kinase 12 (MPK12) in the GABI-KAT line, thereafter as renamed gad2-1*. Guard cell-specific complementation of MPK12 restored the gad2-1* CO2 phenotype, which confirms the proposed importance of MPK12 to CO2 sensitivity. Additionally, we found that stomatal opening under low atmospheric CO2 occurs independently of the GABA-modulated opening-channel ALMT9. Our results confirm that GABA has a role in modulating the rate of stomatal opening and closing - but not in response to CO2 per se.
RESUMO
The mechanosensitive channel of small conductance (MscS) protects bacteria against hypoosmotic shock. It can sense the tension in the surrounding membrane and releases solutes if the pressure in the cell is getting too high. The membrane contacts MscS at sensor paddles, but lipids also leave the membrane and move along grooves between the paddles to reside as far as 15 Å away from the membrane in hydrophobic pockets. One sensing model suggests that a higher tension pulls lipids from the grooves back to the membrane, which triggers gating. However, it is still unclear to what degree this model accounts for sensing and what contribution the direct interaction of the membrane with the channel has. Here, we show that MscS opens when it is sufficiently delipidated by incubation with the detergent dodecyl-ß-maltoside or the branched detergent lauryl maltose neopentyl glycol. After addition of detergent-solubilized lipids, it closes again. These results support the model that lipid extrusion causes gating: Lipids are slowly removed from the grooves and pockets by the incubation with detergent, which triggers opening. Addition of lipids in micelles allows lipids to migrate back into the pockets, which closes the channel even in the absence of a membrane. Based on the distribution of the aliphatic chains in the open and closed conformation, we propose that during gating, lipids leave the complex on the cytosolic leaflet at the height of highest lateral tension, while on the periplasmic side, lipids flow into gaps, which open between transmembrane helices.
Assuntos
Membrana Celular/fisiologia , Ativação do Canal Iônico/fisiologia , Metabolismo dos Lipídeos , Mecanotransdução Celular/fisiologia , Domínio Catalítico , Lipídeos/química , Modelos Moleculares , Pressão Osmótica , Conformação ProteicaRESUMO
All plants are electrically excitable, but only few are known to fire a well-defined, all-or-nothing action potential (AP). The Venus flytrap Dionaea muscipula displays APs with an extraordinarily high firing frequency and speed, enabling the capture organ of this carnivorous plant to catch small animals as fast as flies. The number of APs triggered by the prey is counted and serves as the basis for decisions within the flytrap's hunting cycle. The archetypical Dionaea AP lasts 1 s and consists of five phases: Starting from the resting state, an initial cytosolic Ca2+ transient is followed by depolarization, repolarization and a transient hyperpolarization (overshoot) before the original membrane potential is finally recovered. When the flytrap matures and becomes excitable, a distinct set of ion channels, pumps and carriers is expressed, each mastering a distinct AP phase.
Assuntos
Droseraceae , Animais , Potenciais de Ação , Droseraceae/fisiologia , Canais IônicosRESUMO
Triphyophyllum peltatum, a rare tropical African liana, is unique in its facultative carnivory. The trigger for carnivory is yet unknown, mainly because the plant is difficult to propagate and cultivate. This study aimed at identifying the conditions that result in the formation of carnivorous leaves. In vitro shoots were subjected to abiotic stressors in general and deficiencies of the major nutrients nitrogen, potassium and phosphorus in particular, to trigger carnivorous leaves' development. Adventitious root formation was improved to allow verification of the trigger in glasshouse-grown plants. Among all the stressors tested, only under phosphorus deficiency, the formation of carnivorous leaves was observed. These glandular leaves fully resembled those found under natural growing conditions including the secretion of sticky liquid by mature capture organs. To generate plants for glasshouse experiments, a pulse of 55.4 µM α-naphthaleneacetic acid was essential to achieve 90% in vitro rooting. This plant material facilitated the confirmation of phosphorus starvation to be essential and sufficient for carnivory induction, also under ex vitro conditions. Having established the cultivation of T. peltatum and the induction of carnivory, future gene expression profiles from phosphorus starvation-induced leaves will provide important insight to the molecular mechanism of carnivory on demand.
Assuntos
Dioncophyllaceae , Fósforo , Carnivoridade , Plantas , Folhas de PlantaRESUMO
Plant transpiration is controlled by stomata, with S- and R-type anion channels playing key roles in guard cell action. Arabidopsis mutants lacking the ALMT12/QUAC1 R-type anion channel function in guard cells show only a partial reduction in R-type channel currents. The molecular nature of these remaining R-type anion currents is still unclear. To further elucidate this, patch clamp, transcript and gas-exchange measurements were performed with wild-type (WT) and different almt mutant plants. The R-type current fraction in the almt12 mutant exhibited the same voltage dependence, susceptibility to ATP block and lacked a chloride permeability as the WT. Therefore, we asked whether the R-type anion currents in the ALMT12/QUAC1-free mutant are caused by additional ALMT isoforms. In WT guard cells, ALMT12, ALMT13 and ALMT14 transcripts were detected, whereas only ALMT13 was found expressed in the almt12 mutant. Substantial R-type anion currents still remained active in the almt12/13 and almt12/14 double mutants as well as the almt12/13/14 triple mutant. In good agreement, CO2 -triggered stomatal closure required the activity of ALMT12 but not ALMT13 or ALMT14. The results suggest that, with the exception of ALMT12, channel species other than ALMTs carry the guard cell R-type anion currents.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Ânions , Ácido AbscísicoRESUMO
Guard cells control the opening of stomatal pores in the leaf surface, with the use of a network of protein kinases and phosphatases. Loss of function of the CBL-interacting protein kinase 23 (CIPK23) was previously shown to decrease the stomatal conductance, but the molecular mechanisms underlying this response still need to be clarified. CIPK23 was specifically expressed in Arabidopsis guard cells, using an estrogen-inducible system. Stomatal movements were linked to changes in ion channel activity, determined with double-barreled intracellular electrodes in guard cells and with the two-electrode voltage clamp technique in Xenopus oocytes. Expression of the phosphomimetic variant CIPK23T190D enhanced stomatal opening, while the natural CIPK23 and a kinase-inactive CIPK23K60N variant did not affect stomatal movements. Overexpression of CIPK23T190D repressed the activity of S-type anion channels, while their steady-state activity was unchanged by CIPK23 and CIPK23K60N . We suggest that CIPK23 enhances the stomatal conductance at favorable growth conditions, via the regulation of several ion transport proteins in guard cells. The inhibition of SLAC1-type anion channels is an important facet of this response.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.
Assuntos
Cálcio , Nicotiana , Cálcio/metabolismo , Nicotiana/metabolismo , Cloreto de Sódio/farmacologia , Raízes de Plantas/metabolismo , Folhas de Planta/fisiologia , Sódio/metabolismo , Íons/metabolismoRESUMO
To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
Assuntos
Planta Carnívora , Magnoliopsida , Animais , Transporte Biológico , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , PolissacarídeosRESUMO
The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula's trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair's sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula's hapto-electric signaling.