Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 42(9): 1103-1112, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861953

RESUMO

The activating interplay of thrombosis and inflammation (thromboinflammation) has been established as a major underlying pathway, driving not only cardiovascular disease but also autoimmune disease and most recently, COVID-19. Throughout the years, innate immune cells have emerged as important modulators of this process. As the most abundant white blood cell in humans, neutrophils are well-positioned to propel thromboinflammation. This includes their ability to trigger an organized cell death pathway with the release of decondensed chromatin structures called neutrophil extracellular traps. Decorated with histones and cytoplasmic and granular proteins, neutrophil extracellular traps exert cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. Distinct steps leading to extracellular DNA release (NETosis) require the activities of PAD4 (protein arginine deiminase 4) catalyzing citrullination of histones and are supported by neutrophil inflammasome. By linking the immunologic function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets, PAD4 activity holds important implications for understanding the processes that fuel thromboinflammation. We will also discuss mechanisms whereby vascular occlusion in thromboinflammation depends on the interaction of neutrophil extracellular traps with ultra-large VWF (von Willebrand Factor) and speculate on the importance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thromboinflammatory diseases including atherosclerosis and COVID-19.


Assuntos
Aterosclerose , COVID-19 , Armadilhas Extracelulares , Trombose , Aterosclerose/metabolismo , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Tromboinflamação , Trombose/etiologia , Trombose/metabolismo , Fator de von Willebrand/metabolismo
2.
J Thromb Thrombolysis ; 53(4): 788-797, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34904186

RESUMO

The complement system (CS) plays a pivotal role in Coronavirus disease 2019 (COVID-19) pathophysiology. The objective of this study was to provide a comparative, prospective data analysis of CS components in an all-comers cohort and COVID-19 patients. Patients with suspected COVID-19 infection admitted to the Emergency department were grouped for definite diagnosis of COVID-19 and no COVID-19 accordingly. Clinical presentation, routine laboratory and von Willebrand factor (vWF) antigen as well as CS components 3, 4 and activated 5 (C5a) were assessed. Also, total complement activity via the classical pathway (CH50) was determined. Levels of calprotectin in serum were measured using an automated quantitative lateral flow assay. We included 80 patients in this prospective trial. Of those 19 (23.7%) were tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Patients with COVID-19 had higher levels of CS components 5a and 4 (54.79 [24.14-88.79] ng/ml vs. 35 [23.15-46.1] ng/ml; p = 0.0433 and 0.3772 [± 0.1056] g/L vs. 0.286 [0.2375-0.3748] g/L; p = 0.0168). COVID-19 patients had significantly higher levels of vWF antigen when compared to the control group (288.3 [± 80.26] % vs. 212 [151-320] %; p = 0.0469). There was a significant correlation between CS C3 and 5a with vWF antigen (rs = 0.5957 [p = 0.0131] and rs = 0.5015 [p = 0.042]) in COVID-19 patients. There was no difference in calprotectin plasma levels (4.786 [± 2.397] µg/ml vs. 4.233 [± 2.142] µg/ml; p = 0.4175) between both groups. This prospective data from a single centre all-comers cohort accentuates altered levels of CS components as a distinct feature of COVID-19 disease. Deregulation of CS component 3 and C5a are associated with increased vWF antigen possibly linking vascular damage to alternative CS activation in COVID-19.


Assuntos
COVID-19 , COVID-19/diagnóstico , Serviço Hospitalar de Emergência , Humanos , Fatores Imunológicos , Complexo Antígeno L1 Leucocitário , Estudos Prospectivos , SARS-CoV-2 , Fator de von Willebrand/análise
3.
Sci Rep ; 14(1): 14524, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914598

RESUMO

NLRP3 inflammasome has been implicated in neutrophil polarization and extrusion of neutrophil extracellular traps (NETs) in vitro and facilitates secretion of Il1-beta (IL-1ß). Permanent ligation of the left anterior descending artery was used to induce MI in WT and NLRP3-/- mice as well as in NLRP3-/- recipient mice transfused with either WT or NLRP3-/- neutrophils. NLRP3 deficiency reduced infarct size to roughly a third of WT heart injury and preserved left ventricular (LV) function at 12 h after MI as assessed by echocardiography and triphenyltetrazolium chloride staining of live tissue. Transfusion of WT but not NLRP3-/- neutrophils after MI increased infarct size in NLRP3-/- mice and significantly reduced LV function. The key features of myocardial tissue in WT neutrophil transfused recipients were increased H3Cit-positive deposits with NET-like morphology and increased tissue levels of IL-1ß and plasma levels of von Willebrand Factor (VWF). Flow cytometry analysis also revealed that neutrophil NLRP3 increased the number of labeled and transfused neutrophils in the bone marrow of recipient mice following MI. Our data suggest a key role for neutrophil NLRP3 in the production of IL-1ß and deposition of NETs in cardiac tissue exacerbating injury following MI. We provide evidence for a link between neutrophil NLRP3 and VWF release likely enhancing thromboinflammation in the heart. Neutrophil NLRP3 deficiency conferred similar cardioprotective effects to general NLRP3 deletion in MI rendering anti-neutrophil NLRP3 therapy a promising target for early cardioprotective treatment.


Assuntos
Armadilhas Extracelulares , Interleucina-1beta , Camundongos Knockout , Infarto do Miocárdio , Miocárdio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neutrófilos , Fator de von Willebrand , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/metabolismo , Interleucina-1beta/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Camundongos , Armadilhas Extracelulares/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Camundongos Endogâmicos C57BL , Masculino , Inflamassomos/metabolismo , Modelos Animais de Doenças
4.
JAMA Netw Open ; 7(4): e248818, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687478

RESUMO

Importance: For the design of a randomized clinical trial (RCT), estimation of the expected event rate and effect size of an intervention is needed to calculate the sample size. Overestimation may lead to an underpowered trial. Objective: To evaluate the accuracy of published estimates of event rate and effect size in contemporary cardiovascular RCTs. Evidence Review: A systematic search was conducted in MEDLINE for multicenter cardiovascular RCTs associated with MeSH (Medical Subject Headings) terms for cardiovascular diseases published in the New England Journal of Medicine, JAMA, or the Lancet between January 1, 2010, and December 31, 2019. Identified trials underwent abstract review; eligible trials then underwent full review, and those with insufficiently reported data were excluded. Data were extracted from the original publication or the study protocol, and a random-effects model was used for data pooling. This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guideline. The primary outcome was the accuracy of event rate and effect size estimation. Accuracy was determined by comparing the observed event rate in the control group and the effect size with their hypothesized values. Linear regression was used to determine the association between estimation accuracy and trial characteristics. Findings: Of the 873 RCTs identified, 374 underwent full review and 30 were subsequently excluded, resulting in 344 trials for analysis. The median observed event rate was 9.0% (IQR, 4.3% to 21.4%), which was significantly lower than the estimated event rate of 11.0% (IQR, 6.0% to 25.0%) with a median deviation of -12.3% (95% CI, -16.4% to -5.6%; P < .001). More than half of the trials (196 [61.1%]) overestimated the expected event rate. Accuracy of event rate estimation was associated with a higher likelihood of refuting the null hypothesis (0.13 [95% CI, 0.01 to 0.25]; P = .03). The median observed effect size in superiority trials was 0.91 (IQR, 0.74 to 0.99), which was significantly lower than the estimated effect size of 0.72 (IQR, 0.60 to 0.80), indicating a median overestimation of 23.1% (95% CI, 17.9% to 28.3%). A total of 216 trials (82.1%) overestimated the effect size. Conclusions and Relevance: In this systematic review of contemporary cardiovascular RCTs, event rates of the primary end point and effect sizes of an intervention were frequently overestimated. This overestimation may have contributed to the inability to adequately test the trial hypothesis.


Assuntos
Doenças Cardiovasculares , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Projetos de Pesquisa/normas , Tamanho da Amostra
5.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500179

RESUMO

Rheumatoid arthritis is a prototypic inflammatory condition with affected patients being at greater risk of incident heart failure (HF). Targeting innate immune cell function in the pathogenesis of HF bears the potential to guide the development of future therapies. A collagen-induced arthritis (CIA) model in DBA/1 J mice was used to generate arthritis. Mice with CIA developed concentric hypertrophic myocardial remodeling, left ventricular (LV) diastolic dysfunction, and HF with elevated plasma B-type natriuretic peptide levels but preserved LV ejection fraction. Key features of HF in CIA were increased infiltration of activated neutrophils, deposition of neutrophil extracellular traps in the myocardium, and increased tissue levels of the proinflammatory cytokine IL-1ß. Specific inhibition of protein arginine deiminase 4 (PAD4) by an orally available inhibitor (JBI-589), administered after the onset of clinical arthritis, prevented HF with reduced neutrophil infiltration. We identify PAD4-mediated neutrophil activation and recruitment as the key thromboinflammatory pathway driving HF development in arthritis. Targeting PAD4 may be a viable therapeutic approach for the prevention of HF secondary to chronic inflammation.


Assuntos
Artrite , Insuficiência Cardíaca , Camundongos , Animais , Proteína-Arginina Desiminase do Tipo 4 , Camundongos Endogâmicos DBA , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/prevenção & controle , Inflamação
6.
Front Cardiovasc Med ; 8: 747453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805303

RESUMO

Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is being increasingly applied in patients with circulatory failure, but mortality remains high. An inflammatory response syndrome initiated by activation of blood components in the extracorporeal circuit may be an important contributing factor. Patients with ST-elevation myocardial infarction (STEMI) may also experience a systemic inflammatory response syndrome and are at risk of developing cardiogenic shock and cardiac arrest, both indications for VA-ECMO. Extracellular vesicles (EV) are released by activated cells as mediators of intercellular communication and may serve as prognostic biomarkers. Cardiomyocyte EV, released upon myocardial ischemia, hold strong potential for this purpose. The aim of this study was to assess the EV-profile in VA-ECMO and STEMI patients and the association with outcome. Methods: In this prospective observational study, blood was sampled on day 1 after VA-ECMO initiation or myocardial reperfusion (STEMI patients). EV were isolated by differential centrifugation. Leukocyte, platelet, endothelial, erythrocyte and cardiomyocyte (caveolin-3+) Annexin V+ EV were identified by flow cytometry. EV were assessed in survivors vs. non-survivors of VA-ECMO and in STEMI patients with normal-lightly vs. moderately-severely reduced left ventricular function. Logistic regression was conducted to determine the predictive accuracy of EV. Pearson correlation analysis of EV with clinical parameters was performed. Results: Eighteen VA-ECMO and 19 STEMI patients were recruited. Total Annexin V+, cardiomyocyte and erythrocyte EV concentrations were lower (p ≤ 0.005) while the percentage of platelet EV was increased in VA-ECMO compared to STEMI patients (p = 0.002). Total Annexin V+ EV were increased in non-survivors of VA-ECMO (p = 0.01), and higher levels were predictive of mortality (AUC = 0.79, p = 0.05). Cardiomyocyte EV were increased in STEMI patients with moderately-severely reduced left ventricular function (p = 0.03), correlated with CK-MBmax (r = 0.57, p = 0.02) and time from reperfusion to blood sampling (r = 0.58, p = 0.01). Leukocyte EV correlated with the number of coronary stents placed (r = 0.60, p = 0.02). Conclusions: Elevated total Annexin V+ EV on day 1 of VA-ECMO are predictive of mortality. Increased cardiomyocyte EV on day 1 after STEMI correlate with infarct size and are associated with poor outcome. These EV may aid in the early identification of patients at risk of poor outcome, helping to guide clinical management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA