Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell ; 186(23): 5068-5083.e23, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37804830

RESUMO

Metabolic reprogramming is a hallmark of cancer. However, mechanisms underlying metabolic reprogramming and how altered metabolism in turn enhances tumorigenicity are poorly understood. Here, we report that arginine levels are elevated in murine and patient hepatocellular carcinoma (HCC), despite reduced expression of arginine synthesis genes. Tumor cells accumulate high levels of arginine due to increased uptake and reduced arginine-to-polyamine conversion. Importantly, the high levels of arginine promote tumor formation via further metabolic reprogramming, including changes in glucose, amino acid, nucleotide, and fatty acid metabolism. Mechanistically, arginine binds RNA-binding motif protein 39 (RBM39) to control expression of metabolic genes. RBM39-mediated upregulation of asparagine synthesis leads to enhanced arginine uptake, creating a positive feedback loop to sustain high arginine levels and oncogenic metabolism. Thus, arginine is a second messenger-like molecule that reprograms metabolism to promote tumor growth.


Assuntos
Arginina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Arginina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos , Neoplasias Hepáticas/metabolismo
2.
Mol Cell ; 82(22): 4246-4261.e11, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36400009

RESUMO

Acetyl-coenzyme A (acetyl-CoA) plays an important role in metabolism, gene expression, signaling, and other cellular processes via transfer of its acetyl group to proteins and metabolites. However, the synthesis and usage of acetyl-CoA in disease states such as cancer are poorly characterized. Here, we investigated global acetyl-CoA synthesis and protein acetylation in a mouse model and patient samples of hepatocellular carcinoma (HCC). Unexpectedly, we found that acetyl-CoA levels are decreased in HCC due to transcriptional downregulation of all six acetyl-CoA biosynthesis pathways. This led to hypo-acetylation specifically of non-histone proteins, including many enzymes in metabolic pathways. Importantly, repression of acetyl-CoA synthesis promoted oncogenic dedifferentiation and proliferation. Mechanistically, acetyl-CoA synthesis was repressed by the transcription factors TEAD2 and E2A, previously unknown to control acetyl-CoA synthesis. Knockdown of TEAD2 and E2A restored acetyl-CoA levels and inhibited tumor growth. Our findings causally link transcriptional reprogramming of acetyl-CoA metabolism, dedifferentiation, and cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Acetilcoenzima A/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
4.
Nature ; 555(7698): 678-682, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29562234

RESUMO

Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.


Assuntos
Histidina/metabolismo , Pirofosfatase Inorgânica/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Pirofosfatase Inorgânica/deficiência , Pirofosfatase Inorgânica/genética , Masculino , Camundongos , Fosforilação , Proteômica , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
5.
J Hepatol ; 79(3): 666-676, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290592

RESUMO

BACKGROUND & AIMS: Liver injury after COVID-19 vaccination is very rare and shows clinical and histomorphological similarities with autoimmune hepatitis (AIH). Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI) and its relationship to AIH. Therefore, we compared VILI with AIH. METHODS: Formalin-fixed and paraffin-embedded liver biopsy samples from patients with VILI (n = 6) and from patients with an initial diagnosis of AIH (n = 9) were included. Both cohorts were compared by histomorphological evaluation, whole-transcriptome and spatial transcriptome sequencing, multiplex immunofluorescence, and immune repertoire sequencing. RESULTS: Histomorphology was similar in both cohorts but showed more pronounced centrilobular necrosis in VILI. Gene expression profiling showed that mitochondrial metabolism and oxidative stress-related pathways were more and interferon response pathways were less enriched in VILI. Multiplex analysis revealed that inflammation in VILI was dominated by CD8+ effector T cells, similar to drug-induced autoimmune-like hepatitis. In contrast, AIH showed a dominance of CD4+ effector T cells and CD79a+ B and plasma cells. T-cell receptor (TCR) and B-cell receptor sequencing showed that T and B cell clones were more dominant in VILI than in AIH. In addition, many T cell clones detected in the liver were also found in the blood. Interestingly, analysis of TCR beta chain and Ig heavy chain variable-joining gene usage further showed that TRBV6-1, TRBV5-1, TRBV7-6, and IgHV1-24 genes are used differently in VILI than in AIH. CONCLUSIONS: Our analyses support that SARS-CoV-2 VILI is related to AIH but also shows distinct differences from AIH in histomorphology, pathway activation, cellular immune infiltrates, and TCR usage. Therefore, VILI may be a separate entity, which is distinct from AIH and more closely related to drug-induced autoimmune-like hepatitis. IMPACT AND IMPLICATIONS: Little is known about the pathophysiology of COVID-19 vaccine-induced liver injury (VILI). Our analysis shows that COVID-19 VILI shares some similarities with autoimmune hepatitis, but also has distinct differences such as increased activation of metabolic pathways, a more prominent CD8+ T cell infiltrate, and an oligoclonal T and B cell response. Our findings suggest that VILI is a distinct disease entity. Therefore, there is a good chance that many patients with COVID-19 VILI will recover completely and will not develop long-term autoimmune hepatitis.


Assuntos
COVID-19 , Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatite Autoimune , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , COVID-19/prevenção & controle , Fígado/patologia , Receptores de Antígenos de Linfócitos T , Vacinação
6.
PLoS Comput Biol ; 18(9): e1009767, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067230

RESUMO

Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Teorema de Bayes , Carcinoma Hepatocelular/genética , Análise por Conglomerados , Humanos , Neoplasias Hepáticas/genética , Proteoma , Transcriptoma
7.
Gut ; 71(12): 2526-2538, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35058274

RESUMO

OBJECTIVE: Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN: We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS: MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION: Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.


Assuntos
Doenças Inflamatórias Intestinais , Células T Invariantes Associadas à Mucosa , Humanos , Antígenos de Histocompatibilidade Menor , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Ativação Linfocitária
8.
J Hepatol ; 75(4): 840-847, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004216

RESUMO

BACKGROUND & AIMS: Loss of serum HBsAg is a hallmark of spontaneous and therapy induced resolution of HBV infection, since it generally reflects a profound decrease in viral replication. However, integrated HBV DNA can contribute to HBsAg expression independent of viral replication. The relative contributions of these sources of HBsAg are not well understood. Specifically, it is not known whether actively transcribed HBV integration could spread throughout the entire liver. METHODS: The relative distribution of HBsAg and HBV RNA in liver biopsy tissue from HBeAg-negative (HBe-) patients was analyzed by immunohistochemistry and in situ hybridization (ISH), respectively. Frozen biopsy tissue was used for molecular analysis of intrahepatic viral RNA, virus-host chimeric transcripts and viral DNA. RESULTS: Immunohistochemistry and ISH analysis revealed HBsAg and HBV RNA positivity in virtually all hepatocytes in the liver of some HBe- patients despite very low viremia. Reverse transcription quantitative PCR and RNA-sequencing analysis confirmed high expression levels of HBV envelope-encoding RNAs. However, the amount of viral transcriptional template (covalently closed circular (ccc)DNA) was too low to support this ubiquitous HBV RNA expression. In contrast, levels of total cellular HBV DNA were consistent with ubiquitous HBV integration. Finally, RNA-sequencing revealed the presence of many HBV-host chimeric transcripts with the potential for HBsAg expression. CONCLUSIONS: Transcriptionally active HBV integration can extend to the entire liver in some HBe- patients. This can lead to ubiquitous HBsAg expression independent of HBV replication. In such patients, HBsAg is probably not a clinically useful surrogate marker for viral resolution or functional cure. LAY SUMMARY: Loss of serum hepatitis B surface antigen (HBsAg) indicates resolution of HBV infection. However, integrated HBV DNA can contribute to HBsAg production independently of viral replication. We investigated the extent of HBsAg-producing viral integration in the livers of patients with low serum viral loads. Our findings suggest that transcriptionally active HBV integration can extend to the entire liver in some patients, questioning the clinical utility of HBsAg as a surrogate marker for viral replication.


Assuntos
DNA Viral/análise , Anticorpos Anti-Hepatite B/análise , Hepatite B/sangue , Carga Viral/estatística & dados numéricos , Adulto , DNA Viral/sangue , Feminino , Hepatite B/fisiopatologia , Hepatite B/virologia , Anticorpos Anti-Hepatite B/sangue , Vírus da Hepatite B/genética , Humanos , Masculino , Pessoa de Meia-Idade , Carga Viral/métodos
9.
Eur Radiol ; 31(6): 4367-4376, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33274405

RESUMO

OBJECTIVES: To investigate if nested multiparametric decision tree models based on tumor size and CT texture parameters from pre-therapeutic imaging can accurately predict hepatocellular carcinoma (HCC) lesion response to transcatheter arterial chemoembolization (TACE). MATERIALS AND METHODS: This retrospective study (January 2011-September 2017) included consecutive pre- and post-therapeutic dynamic CT scans of 37 patients with 92 biopsy-proven HCC lesions treated with drug-eluting bead TACE. Following manual segmentation of lesions according to modified Response Evaluation Criteria in Solid Tumors criteria on baseline arterial phase CT images, tumor size and quantitative texture parameters were extracted. HCCs were grouped into lesions undergoing primary TACE (VT-lesions) or repeated TACE (RT-lesions). Distinct multiparametric decision tree models to predict complete response (CR) and progressive disease (PD) for the two groups were generated. AUC and model accuracy were assessed. RESULTS: Thirty-eight of 72 VT-lesions (52.8%) and 8 of 20 RT-lesions (40%) achieved CR. Sixteen VT-lesions (22.2%) and 8 RT-lesions (40%) showed PD on follow-up imaging despite TACE treatment. Mean of positive pixels (MPP) was significantly higher in VT-lesions compared to RT-lesions (180.5 vs 92.8, p = 0.001). The highest AUC in ROC curve analysis and accuracy was observed for the prediction of CR in VT-lesions (AUC 0.96, positive predictive value 96.9%, accuracy 88.9%). Prediction of PD in VT-lesions (AUC 0.88, accuracy 80.6%), CR in RT-lesions (AUC 0.83, accuracy 75.0%), and PD in RT-lesions (AUC 0.86, accuracy 80.0%) was slightly inferior. CONCLUSIONS: Nested multiparametric decision tree models based on tumor heterogeneity and size can predict HCC lesion response to TACE treatment with high accuracy. They may be used as an additional criterion in the multidisciplinary treatment decision-making process. KEY POINTS: • HCC lesion response to TACE treatment can be predicted with high accuracy based on baseline tumor heterogeneity and size. • Complete response of HCC lesions undergoing primary TACE was correctly predicted with 88.9% accuracy and a positive predictive value of 96.9%. • Progressive disease was correctly predicted with 80.6% accuracy for lesions undergoing primary TACE and 80.0% accuracy for lesions undergoing repeated TACE.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Árvores de Decisões , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
10.
J Hepatol ; 73(3): 549-558, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32294532

RESUMO

BACKGROUND & AIMS: HCV is a positive-strand RNA virus that primarily infects human hepatocytes. Recent studies have reported that C19orf66 is expressed as an interferon (IFN)-stimulated gene; however, the intrinsic regulation of this gene within the liver as well as its antiviral effects against HCV remain elusive. METHODS: Expression of C19orf66 was quantified in both liver biopsies and primary human hepatocytes, with or without HCV infection. Mechanistic studies of the potent anti-HCV phenotype mediated by C19orf66 were conducted using state-of-the-art virological, biochemical and genetic approaches, as well as correlative light and electron microscopy and transcriptome and proteome analysis. RESULTS: Upregulation of C19orf66 mRNA was observed in both primary human hepatocytes upon HCV infection and in the livers of patients with chronic hepatitis C (CHC). In addition, pegIFNα/ribavirin therapy induced C19orf66 expression in patients with CHC. Transcriptomic profiling and whole cell proteomics of hepatoma cells ectopically expressing C19orf66 revealed no induction of other antiviral genes. Expression of C19orf66 restricted HCV infection, whereas CRIPSPR/Cas9 mediated knockout of C19orf66 attenuated IFN-mediated suppression of HCV replication. Co-immunoprecipitation followed by mass spectrometry identified a stress granule protein-dominated interactome of C19orf66. Studies with subgenomic HCV replicons and an expression system revealed that C19orf66 expression impairs HCV-induced elevation of phosphatidylinositol-4-phosphate, alters the morphology of the viral replication organelle (termed the membranous web) and thereby targets viral RNA replication. CONCLUSION: C19orf66 is an IFN-stimulated gene, which is upregulated in hepatocytes within the first hours post IFN treatment or HCV infection in vivo. The encoded protein possesses specific antiviral activity against HCV and targets the formation of the membranous web. Our study identifies C19orf66 as an IFN-inducible restriction factor with a novel antiviral mechanism that specifically targets HCV replication. LAY SUMMARY: Interferon-stimulated genes are thought to be important to for antiviral immune responses to HCV. Herein, we analysed C19orf66, an interferon-stimulated gene, which appears to inhibit HCV replication. It prevents the HCV-induced elevation of phosphatidylinositol-4-phosphate and alters the morphology of HCV's replication organelle.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/metabolismo , Interferons/uso terapêutico , Organelas/virologia , Proteínas de Ligação a RNA/metabolismo , Compartimentos de Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adulto , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Genótipo , Células HEK293 , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Organelas/efeitos dos fármacos , Organelas/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Replicon/efeitos dos fármacos , Replicon/genética , Ribavirina/uso terapêutico , Resultado do Tratamento , Replicação Viral/genética
11.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787147

RESUMO

Covalently closed circular DNA (cccDNA) forms the basis for replication and persistence of hepatitis B virus (HBV) in the chronically infected liver. We have previously shown that viral transcription is subject to regulation by posttranslational modifications (PTMs) of histone proteins bound to cccDNA through analysis of de novo HBV-infected cell lines. We now report the successful adaptation of this chromatin immunoprecipitation sequencing (ChIPseq) approach for analysis of fine-needle patient liver biopsy specimens to investigate the role of histone PTMs in chronically HBV-infected patients. Using 18 specimens from patients in different stages of chronic HBV infection, our work shows that the profile of histone PTMs in chronic infection is more nuanced than previously observed in in vitro models of acute infection. In line with our previous findings, we find that the majority of HBV-derived sequences are associated with the activating histone PTM H3K4me3. However, we show a striking interpatient variability of its deposition in this patient cohort correlated with viral transcription and patient HBV early antigen (HBeAg) status. Unexpectedly, we detected deposition of the classical inhibitory histone PTM H3K9me3 on HBV-DNA in around half of the patient biopsy specimens, which could not be linked to reduced levels of viral transcripts. Our results show that current in vitro models are unable to fully recapitulate the complex epigenetic landscape of chronic HBV infection observed in vivo and demonstrate that fine-needle liver biopsy specimens can provide sufficient material to further investigate the interaction of viral and host proteins on HBV-DNA.IMPORTANCE Hepatitis B virus (HBV) is a major global health concern, chronically infecting millions of patients and contributing to a rising burden of liver disease. The viral genome forms the basis for chronic infection and has been shown to be subject to regulation by epigenetic mechanisms, such as posttranslational modification of histone proteins. Here, we confirm and expand on previous results by adapting a high-resolution technique for analysis of histone modifications for use with patient-derived fine-needle liver biopsy specimens. Our work highlights that the situation in vivo is more complex than predicted by current in vitro models, for example, by suggesting a novel, noncanonical role of the histone modification H3K9me3 in the HBV life cycle. Importantly, enabling the use of fine-needle liver biopsy specimens for such high-resolution analyses may facilitate further research into the epigenetic regulation of the HBV genome.


Assuntos
DNA Viral/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica , Histonas/metabolismo , Fígado , Processamento de Proteína Pós-Traducional , Adolescente , Adulto , Idoso , Biópsia por Agulha Fina , Feminino , Células Hep G2 , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade
12.
Gastroenterology ; 154(6): 1778-1790, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29408639

RESUMO

BACKGROUND & AIMS: Most viruses are detected at early stages of cell infection and induce an innate immune response mediated by production of interferons (IFNs). IFNs induce expression of hundreds of IFN-stimulated genes (ISGs). Infection of chimpanzees with hepatitis C virus, but not hepatitis B virus (HBV), induces ISG expression in the liver. HBV might not induce an innate immune response because it is not detected by pattern recognition receptors (the stealth properties of HBV) or because HBV suppresses IFN production or signaling despite detection by pattern recognition receptors. We studied innate immune signaling in liver biopsies from patients with different stages of chronic HBV infection and uninfected individuals (controls). METHODS: We obtained liver within 10 minutes after collection from 30 patients with chronic HBV infection (hepatitis B e antigen-positive or -negative, with or without hepatitis) and 42 controls (most with fatty liver disease). The liver tissues were analyzed by histology, immunohistochemistry, quantitative reverse-transcription polymerase chain reaction, in situ hybridization, HBV RNA quantification, and HBV genotyping; some specimens were incubated with toll-like receptor (TLR) ligands (polyinosinic-polycytidylic acid) or infected with Sendai virus and then analyzed. RESULTS: Liver specimens from patients with HBV infection were not expressing more IFN or ISGs than those from control patients, indicating that chronic HBV infection did not activate an innate immune response. However, liver specimens from patients with HBV infection did produce IFN and induce expression of ISGs following activation of TLR3 with poly(I:C) or Sendai virus infections, so the innate immune response is not suppressed in these tissues. CONCLUSION: Liver tissues from patients with chronic HBV infection do not have induction of an innate immune response, but this response can be activated by other factors (TLR3 binding, Sendai virus infection) in HBV-infected liver tissue. These findings support the hypothesis that HBV is invisible to pattern recognition receptors.


Assuntos
Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatócitos/imunologia , Imunidade Inata/imunologia , Fígado/imunologia , Adulto , Biópsia , Estudos de Casos e Controles , Feminino , Hepatite B/patologia , Hepatite B/virologia , Hepatócitos/virologia , Humanos , Fatores Reguladores de Interferon/metabolismo , Interferons/biossíntese , Fígado/patologia , Fígado/virologia , Masculino
13.
Proc Natl Acad Sci U S A ; 113(5): 1381-6, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787912

RESUMO

Compensatory signaling pathways in tumors confer resistance to targeted therapy, but the pathways and their mechanisms of activation remain largely unknown. We describe a procedure for quantitative proteomics and phosphoproteomics on snap-frozen biopsies of hepatocellular carcinoma (HCC) and matched nontumor liver tissue. We applied this procedure to monitor signaling pathways in serial biopsies taken from an HCC patient before and during treatment with the multikinase inhibitor sorafenib. At diagnosis, the patient had an advanced HCC. At the time of the second biopsy, abdominal imaging revealed progressive disease despite sorafenib treatment. Sorafenib was confirmed to inhibit MAPK signaling in the tumor, as measured by reduced ribosomal protein S6 kinase phosphorylation. Hierarchical clustering and enrichment analysis revealed pathways broadly implicated in tumor progression and resistance, such as epithelial-to-mesenchymal transition and cell adhesion pathways. Thus, we describe a protocol for quantitative analysis of oncogenic pathways in HCC biopsies and obtained first insights into the effect of sorafenib in vivo. This protocol will allow elucidation of mechanisms of resistance and enable precision medicine.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Fosfoproteínas/metabolismo , Proteômica , Biópsia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Niacinamida/uso terapêutico , Fosforilação , Sorafenibe
14.
Gut ; 67(5): 953-962, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159835

RESUMO

BACKGROUND AND AIMS: HCV infection is a leading risk factor of hepatocellular carcinoma (HCC). However, even after viral clearance, HCC risk remains elevated. HCV perturbs host cell signalling to maintain infection, and derailed signalling circuitry is a key driver of carcinogenesis. Since protein phosphatases are regulators of signalling events, we aimed to identify phosphatases that respond to HCV infection with relevance for hepatocarcinogenesis. METHODS: We assessed mRNA and microRNA (miRNA) expression profiles in primary human hepatocytes, liver biopsies and resections of patients with HCC, and analysed microarray and RNA-seq data from paired liver biopsies of patients with HCC. We revealed changes in transcriptional networks through gene set enrichment analysis and correlated phosphatase expression levels to patient survival and tumour recurrence. RESULTS: We demonstrate that tumour suppressor protein tyrosine phosphatase receptor delta (PTPRD) is impaired by HCV infection in vivo and in HCC lesions of paired liver biopsies independent from tissue inflammation or fibrosis. In liver tissue adjacent to tumour, high PTPRD levels are associated with a dampened transcriptional activity of STAT3, an increase of patient survival from HCC and reduced tumour recurrence after surgical resection. We identified miR-135a-5p as a mechanistic regulator of hepatic PTPRD expression in patients with HCV. CONCLUSIONS: We previously demonstrated that STAT3 is required for HCV infection. We conclude that HCV promotes a STAT3 transcriptional programme in the liver of patients by suppressing its regulator PTPRD via upregulation of miR-135a-5p. Our results show the existence of a perturbed PTPRD-STAT3 axis potentially driving malignant progression of HCV-associated liver disease.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepacivirus/patogenicidade , Hepatite C/complicações , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Carcinogênese/metabolismo , Carcinoma Hepatocelular/virologia , Regulação para Baixo , Feminino , Hepatócitos/metabolismo , Humanos , Hibridização in Situ Fluorescente , Fígado/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
15.
J Biol Chem ; 292(43): 17928-17938, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28900038

RESUMO

Type I (α and ß) and type III (λ) IFNs are induced upon viral infection through host sensory pathways that activate IFN regulatory factors (IRFs) and nuclear factor κB. Secreted IFNs induce autocrine and paracrine signaling through the JAK-STAT pathway, leading to the transcriptional induction of hundreds of IFN-stimulated genes, among them sensory pathway components such as cGAS, STING, RIG-I, MDA5, and the transcription factor IRF7, which enhance the induction of IFN-αs and IFN-λs. This positive feedback loop enables a very rapid and strong host response that, at some point, has to be controlled by negative regulators to maintain tissue homeostasis. Type I IFN signaling is controlled by the inducible negative regulators suppressor of cytokine signaling 1 (SOCS1), SOCS3, and ubiquitin-specific peptidase 18 (USP18). The physiological role of these proteins in IFN-γ signaling has not been clarified. Here we used knockout cell lines and mice to show that IFN-λ signaling is regulated by SOCS1 but not by SOCS3 or USP18. These differences were the basis for the distinct kinetic properties of type I and III IFNs. We found that IFN-α signaling is transient and becomes refractory after hours, whereas IFN-λ provides a long-lasting IFN-stimulated gene induction.


Assuntos
Regulação da Expressão Gênica/fisiologia , Interferons/metabolismo , Transdução de Sinais/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Linhagem Celular Tumoral , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Receptores Imunológicos , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
J Virol ; 90(14): 6387-6400, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27147737

RESUMO

UNLABELLED: Hepatitis C virus (HCV)-induced chronic liver disease is a leading cause of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying HCC development following chronic HCV infection remain poorly understood. MicroRNAs (miRNAs) play an important role in homeostasis within the liver, and deregulation of miRNAs has been associated with liver disease, including HCC. While host miRNAs are essential for HCV replication, viral infection in turn appears to induce alterations of intrahepatic miRNA networks. Although the cross talk between HCV and liver cell miRNAs most likely contributes to liver disease pathogenesis, the functional involvement of miRNAs in HCV-driven hepatocyte injury and HCC remains elusive. Here we combined a hepatocyte-like cell-based model system, high-throughput small RNA sequencing, computational analysis, and functional studies to investigate HCV-miRNA interactions that may contribute to liver disease and HCC. Profiling analyses indicated that HCV infection differentially regulated the expression of 72 miRNAs by at least 2-fold, including miRNAs that were previously described to target genes associated with inflammation, fibrosis, and cancer development. Further investigation demonstrated that the miR-146a-5p level was consistently increased in HCV-infected hepatocyte-like cells and primary human hepatocytes, as well as in liver tissue from HCV-infected patients. Genome-wide microarray and computational analyses indicated that miR-146a-5p overexpression modulates pathways that are related to liver disease and HCC development. Furthermore, we showed that miR-146a-5p has a positive impact on late steps of the viral replication cycle, thereby increasing HCV infection. Collectively, our data indicate that the HCV-induced increase in miR-146a-5p expression both promotes viral infection and is relevant for pathogenesis of liver disease. IMPORTANCE: HCV is a leading cause of chronic liver disease and cancer. However, how HCV induces liver cancer remains poorly understood. There is accumulating evidence that a viral cure does not eliminate the risk for HCC development. Thus, there is an unmet medical need to develop novel approaches to predict and prevent virus-induced HCC. miRNA expression is known to be deregulated in liver disease and cancer. Furthermore, miRNAs are essential for HCV replication, and HCV infection alters miRNA expression. However, how miRNAs contribute to HCV-driven pathogenesis remains elusive. Here we show that HCV induces miRNAs that may contribute to liver injury and carcinogenesis. The miR-146a-5p level was consistently increased in different cell-based models of HCV infection and in HCV patient-derived liver tissue. Furthermore, miR-146a-5p increased HCV infection. Collectively, our data are relevant to understanding viral pathogenesis and may open perspectives for novel biomarkers and prevention of virus-induced liver disease and HCC.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/patogenicidade , Hepatite C/virologia , Hepatócitos/metabolismo , Neoplasias Hepáticas/virologia , Redes e Vias Metabólicas/genética , MicroRNAs/genética , Adulto , Idoso , Biomarcadores/análise , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Feminino , Perfilação da Expressão Gênica , Hepatite C/genética , Hepatite C/patologia , Hepatócitos/citologia , Hepatócitos/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Ativação Transcricional , Regulação para Cima
17.
Hepatology ; 64(5): 1462-1472, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27339598

RESUMO

There is growing evidence that human genetic variants contribute to liver fibrosis in subjects with hepatitis C virus (HCV) monoinfection, but this aspect has been little investigated in patients coinfected with HCV and human immunodeficiency virus (HIV). We performed the first genome-wide association study of liver fibrosis progression in patients coinfected with HCV and HIV, using the well-characterized French National Agency for Research on AIDS and Viral Hepatitis CO13 HEPAVIH cohort. Liver fibrosis was assessed by elastography (FibroScan), providing a quantitative fibrosis score. After quality control, a genome-wide association study was conducted on 289 Caucasian patients, for a total of 8,426,597 genotyped (Illumina Omni2.5 BeadChip) or reliably imputed single-nucleotide polymorphisms. Single-nucleotide polymorphisms with P values <10-6 were investigated in two independent replication cohorts of European patients infected with HCV alone. Two signals of genome-wide significance (P < 5 × 10-8 ) were obtained. The first, on chromosome 3p25 and corresponding to rs61183828 (P = 3.8 × 10-9 ), was replicated in the two independent cohorts of patients with HCV monoinfection. The cluster of single-nucleotide polymorphisms in linkage disequilibrium with rs61183828 was located close to two genes involved in mechanisms affecting both cell signaling and cell structure (CAV3) or HCV replication (RAD18). The second signal, obtained with rs11790131 (P = 9.3 × 10-9 ) on chromosome region 9p22, was not replicated. CONCLUSION: This genome-wide association study identified a new locus associated with liver fibrosis severity in patients with HIV/HCV coinfection, on chromosome 3p25, a finding that was replicated in patients with HCV monoinfection; these results provide new relevant hypotheses for the pathogenesis of liver fibrosis in patients with HIV/HCV coinfection that may help define new targets for drug development or new prognostic tests, to improve patient care. (Hepatology 2016;64:1462-1472).


Assuntos
Loci Gênicos , Infecções por HIV/complicações , Hepatite C Crônica/complicações , Cirrose Hepática/genética , Cirrose Hepática/virologia , Coinfecção , Progressão da Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
18.
Liver Int ; 37(10): 1431-1445, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28261910

RESUMO

While hepatitis C exemplifies the role of host genetics in infectious diseases outcomes, there is no comprehensive overview of polymorphisms influencing spontaneous and/or treatment-induced hepatitis C virus clearance. We performed a systematic review and meta-analysis of host polymorphisms associated with these phenotypes. Literature search was conducted using combinations of keywords in three databases. Studies were reviewed and relevant data systematically extracted for subsequent meta-analyses. Polymorphisms from candidate gene studies were tested in two cohorts of HCV-infected patients with available genomic data. The literature search yielded 8'294 citations, among which 262 studies were selected. In the meta-analysis of 27 HLA studies, the most significant associations with spontaneous hepatitis C virus clearance included DQB1*02, DQB1*03, DRB1*04 and DRB1*11. In the meta-analysis of 16 studies of KIR genes and their HLA-ligands, KIR2DS3 was associated with both spontaneous and treatment-induced clearance, and the HLA-C2 ligand with failure to spontaneously clear the virus. In a pooled analysis of 105 candidate genes and two genome-wide association studies, we observed associations of single nucleotide polymorphisms from nine genes (EIF2AK2, IFNAR2, ITPA, MBL2, MX1, OASL, SPP1, TGFB1, TNK2) with response to interferon-based therapy. Meta-analysis of 141 studies confirmed the association of IFNL3/4 polymorphisms with spontaneous and treatment-induced hepatitis C virus clearance, even in previously underpowered groups, such as hepatitis C virus genotypes 2/3-infected patients. This study may contribute to a better understanding of hepatitis C virus immunopathogenesis and highlights the complex role of host genetics in hepatitis C virus clearance.


Assuntos
Antígenos HLA/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/virologia , Polimorfismo de Nucleotídeo Único , Receptores KIR/genética , Antivirais/uso terapêutico , Genótipo , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/diagnóstico , Hepatite C/tratamento farmacológico , Interações Hospedeiro-Patógeno , Humanos , Razão de Chances , Fenótipo , Resposta Viral Sustentada , Resultado do Tratamento
19.
J Gastroenterol Hepatol ; 32(8): 1480-1486, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28052383

RESUMO

BACKGROUND AND AIM: Most patients with a hepatocellular carcinoma (HCC) have an underlying chronic liver inflammation, which causes a continuous damage leading to liver cirrhosis and eventually HCC. However, only a minority of cirrhotic patients develop HCC. To assess a possible differential impact of liver inflammation in patients developing HCC versus patients remaining tumor-free, we designed a longitudinal study and analysed liver tissue of the same patients (n = 33) at two points in time: once when no HCC was present and once several years later when an HCC was present. As a control group, we followed cirrhotic patients (n = 37) remaining tumor-free over a similar time frame. METHODS: We analysed cell damage and senescence of hepatocytes by measuring γ-H2AX positivity, p16INK4 and p21WAF/Cip1 expression, nuclear size, and telomere length. RESULTS: γ-H2AX positivity, p16INK4 and p21WAF/Cip1 expression, in the first liver biopsy was similar in patients developing HCC later on and cirrhotic patients remaining tumor free. In contrast, γ-H2AX positivity, p16INK4 and p21WAF/Cip1 expression, was significantly higher in the second non-tumoral liver biopsy of HCC patients than in the control patients. Consequently, the individual increase in γ-H2AX positivity, p16INK4 and p21WAF/Cip1 expression, from the first biopsy to the second biopsy was significantly higher in patients developing HCC than in patients remaining tumor free. In addition, changes in nuclear size and telomere length revealed a more pronounced cell aging in patients developing HCC than in patients remaining tumor free. CONCLUSIONS: Hepatocytes from patients developing HCC go through more pronounced cell damage and senescence in contrast to cirrhotic patients remaining tumor free.


Assuntos
Carcinoma Hepatocelular/patologia , Senescência Celular , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Fígado/patologia , Adulto , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Tamanho do Núcleo Celular , Senescência Celular/genética , Feminino , Expressão Gênica , Histonas , Humanos , Inflamação , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Homeostase do Telômero
20.
Nature ; 474(7353): 649-53, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654750

RESUMO

Defects in insulin signalling are among the most common and earliest defects that predispose an individual to the development of type 2 diabetes. MicroRNAs have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism. However, the direct regulation of insulin sensitivity by microRNAs in vivo has not been demonstrated. Here we show that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice. Silencing of miR-103/107 leads to improved glucose homeostasis and insulin sensitivity. In contrast, gain of miR-103/107 function in either liver or fat is sufficient to induce impaired glucose homeostasis. We identify caveolin-1, a critical regulator of the insulin receptor, as a direct target gene of miR-103/107. We demonstrate that caveolin-1 is upregulated upon miR-103/107 inactivation in adipocytes and that this is concomitant with stabilization of the insulin receptor, enhanced insulin signalling, decreased adipocyte size and enhanced insulin-stimulated glucose uptake. These findings demonstrate the central importance of miR-103/107 to insulin sensitivity and identify a new target for the treatment of type 2 diabetes and obesity.


Assuntos
Insulina/metabolismo , MicroRNAs/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Caveolina 1/metabolismo , Tamanho Celular , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Glucose/metabolismo , Homeostase , Hiperglicemia/fisiopatologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA