Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transgenic Res ; 32(6): 537-546, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37847464

RESUMO

Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.


Assuntos
Mioglobina , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Mioglobina/genética , Mioglobina/metabolismo , Proteínas de Peixe-Zebra/genética , Sistemas CRISPR-Cas , Fenótipo , Técnicas de Inativação de Genes
2.
Biol Open ; 13(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38887971

RESUMO

Zebrafish have become a widely used vertebrate model in physiology and reliable measures of their metabolic rate are needed. We have developed a 3D-printed respirometer and swim tunnel system and used it for obtaining accurate measurement of standard metabolic rate (SMR) and maximal, aerobic metabolic rate (MMR) in zebrafish under rest and maximal exercise, respectively. We compared a slow (stepwise) protocol to a fast (continuous) protocol for determining MMR. The fast protocol yielded slightly (but not significantly) higher oxygen consumption rates than the slow protocol and the data, in contrast to the slow protocol, followed a normal distribution. These findings point to the fast protocol as a fast and reliable method for obtaining accurate values of MMR in zebrafish. We make the 3D drawings for printing the system available to researchers, to help streamline the field of metabolic research in zebrafish and other smaller fish species.


Assuntos
Consumo de Oxigênio , Impressão Tridimensional , Natação , Peixe-Zebra , Animais , Metabolismo Energético , Metabolismo Basal
3.
Biotechniques ; 68(6): 345-348, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372650

RESUMO

We describe the application of simple cloning by prolonged overlap extension for multiple site-directed mutagenesis in the same plasmid. We show that it is possible to use this technique with very short PCR templates. The technique is ideally suited for the generation of longer donor DNA sequences for CRISPR/Cas9-mediated homologous repair.


Assuntos
Sistemas CRISPR-Cas/genética , Clonagem Molecular/métodos , DNA/genética , Mutagênese Sítio-Dirigida/métodos , DNA/química , Reparo do DNA/genética , Edição de Genes/métodos , Humanos , Mutação/genética , Plasmídeos/química , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA