Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7853): 225-231, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828319

RESUMO

Microporous polymers feature shape-persistent free volume elements (FVEs), which are permeated by small molecules and ions when used as membranes for chemical separations, water purification, fuel cells and batteries1-3. Identifying FVEs that have analyte specificity remains a challenge, owing to difficulties in generating polymers with sufficient diversity to enable screening of their properties. Here we describe a diversity-oriented synthetic strategy for microporous polymer membranes to identify candidates featuring FVEs that serve as solvation cages for lithium ions (Li+). This strategy includes diversification of bis(catechol) monomers by Mannich reactions to introduce Li+-coordinating functionality within FVEs, topology-enforcing polymerizations for networking FVEs into different pore architectures, and several on-polymer reactions for diversifying pore geometries and dielectric properties. The most promising candidate membranes featuring ion solvation cages exhibited both higher ionic conductivity and higher cation transference number than control membranes, in which FVEs were aspecific, indicating that conventional bounds for membrane permeability and selectivity for ion transport can be overcome4. These advantages are associated with enhanced Li+ partitioning from the electrolyte when cages are present, higher diffusion barriers for anions within pores, and network-enforced restrictions on Li+ coordination number compared to the bulk electrolyte, which reduces the effective mass of the working ion. Such membranes show promise as anode-stabilizing interlayers in high-voltage lithium metal batteries.

2.
Proc Natl Acad Sci U S A ; 120(46): e2306902120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37934823

RESUMO

Plastic recycling presents a vexing challenge. Mechanical recycling offers substantial greenhouse gas emissions savings relative to virgin plastic production but suffers from degraded aesthetic and mechanical properties. Polypropylene, one of the most widely used and lowest-cost plastics, features methyl pendants along the polymer backbone, rendering it particularly susceptible to declining properties, performance, and aesthetics across a succession of mechanical recycles. Advanced processes, such as solvent-assisted recycling, promise near-virgin quality outputs at a greater energy and emissions footprint. Mechanical and advanced recycling are often presented as competing options, but real-world plastic waste streams are likely to require preprocessing regardless of whether they are routed to an advanced process. This study quantifies the life-cycle greenhouse gas implications of multiple recycling strategies and proposes a system in which mechanical and solvent-assisted recycling can be leveraged together to boost recycling rates and satisfy demand for a wider range of product applications. Polypropylene can be recovered from mixed-plastic bales produced at material recovery facilities and processed through mechanical recycling, with a varying fraction sent for further upgrading via solvent-assisted recycling to produce material approved for food packaging and other higher-quality applications. The resulting mechanically recycled rigid polypropylene reduces life-cycle greenhouse gas emissions by 80% relative to the same quantity of virgin material, while the upgraded higher-quality material achieves GHG savings of 30%.

3.
J Am Chem Soc ; 146(25): 17474-17486, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860830

RESUMO

Soluble redox-active polymers (RAPs) enable size-exclusion nonaqueous redox flow batteries (NaRFBs) which promise high energy density. Pendants along the RAPs not only store charge but also engage in electron transfer to varying extents based on their designs. Here, we explore these phenomena in Metal-containing Redox Active Polymers (M-RAPs, M = Ru, Fe, Co). We assess by using cyclic voltammetry and chronoamperometry with ultramicroelectrodes the current response to electrolyte concentration spanning 3 orders of magnitude. Currents scaled as Ru-RAP > Fe-RAP ≫ Co-RAP, consistent with electron self-exchange trends in the small molecule analogues of the MII/III redox pair. Varying the ionic strength of the electrolyte also revealed nonmonotonic behavior, evidencing the impact of polyelectrolytic dynamics on M-RAP redox response. We developed a model to account for the behavior by combining kinetic Monte Carlo and Brownian dynamics near a boundary representing an electrode. While 1D pendant-to-pendant charge transfer along the chain is not a strong function of electrolyte concentration, the microstructure of the RAP at different electrolyte concentrations is decisively impacted, yielding qualitative trends to those observed experimentally. M-RAP size-exclusion NaRFBs using a poly viologen as negolyte varied in average potential with ∼1.54 V for Ru-RAP, ∼1.37 V for Fe-RAP, and ∼0.52 V for Co-RAP. Comparison of batteries at their optimal and suboptimal solution conditions as gauged from analytical experiments showed clear correlations in performance. This work provides a blueprint for understanding the factors underpinning charge transfer in solutions of RAPs for batteries and beyond.

4.
Small ; 20(15): e2308560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994305

RESUMO

The in-plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water-oil interface is investigated in situ by UV-vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine-functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non-plasmonic (PS/SiO2) NPs. As the PS/SiO2 content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmax changes within the first few minutes of adsorption due to weak attractive inter-NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non-plasmonic NP content. Grazing incidence small angle X-ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non-plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase-separated NP films.

5.
Nano Lett ; 23(23): 11129-11136, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038194

RESUMO

The photon upconverting properties of lanthanide-doped nanoparticles drive their applications in imaging, optoelectronics, and additive manufacturing. To maximize their brightness, these upconverting nanoparticles (UCNPs) are often synthesized as core/shell heterostructures. However, the large numbers of compositional and structural parameters in multishell heterostructures make optimizing optical properties challenging. Here, we demonstrate the use of Bayesian optimization (BO) to learn the structure and design rules for multishell UCNPs with bright ultraviolet and violet emission. We leverage an automated workflow that iteratively recommends candidate UCNP structures and then simulates their emission spectra using kinetic Monte Carlo. Yb3+/Er3+- and Yb3+/Er3+/Tm3+-codoped UCNP nanostructures optimized with this BO workflow achieve 10- and 110-fold brighter emission within 22 and 40 iterations, respectively. This workflow can be expanded to structures with higher compositional and structural complexity, accelerating the discovery of novel UCNPs while domain-specific knowledge is being developed.

6.
Angew Chem Int Ed Engl ; 63(24): e202403790, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38589294

RESUMO

Assemblies of nanoparticles at liquid interfaces hold promise as dynamic "active" systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion.

7.
J Am Chem Soc ; 145(14): 8082-8089, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976546

RESUMO

The design of circular polymers has emerged as a necessity due to the lack of efficient recycling methods for many commodity plastics, particularly those used in durable products. Among the promising circular polymers, polydiketoenamines (PDKs) stand out for their ability to undergo highly selective depolymerization in strong acid, allowing monomers to be recovered from additives and fillers. Varying the triketone monomer in PDK variants is known to strongly affect the depolymerization rate; however, it remains unclear how the chemistry of the cross-linker, far from the reaction center, affects the depolymerization rate. Notably, we found that a proximal amine in the cross-linker dramatically accelerates PDK depolymerization when compared to cross-linkers obviating this functionality. Moreover, the spacing between this amine and the diketoenamine bond offers a previously unexplored opportunity to tune PDK depolymerization rates. In this way, the molecular basis for PDK circularity is revealed and further suggests new targets for the amine monomer design to diversify PDK properties, while ensuring circularity in chemical recycling.

8.
J Am Chem Soc ; 145(34): 18877-18887, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37585274

RESUMO

Redox flow batteries (RFBs) are a promising stationary energy storage technology for leveling power supply from intermittent renewable energy sources with demand. A central objective for the development of practical, scalable RFBs is to identify affordable and high-performance redox-active molecules as storage materials. Herein, we report the design, synthesis, and evaluation of a new organic scaffold, indolo[2,3-b]quinoxaline, for highly stable, low-reduction potential, and high-solubility anolytes for nonaqueous redox flow batteries (NARFBs). The mixture of 2- and 3-(tert-butyl)-6-(2-methoxyethyl)-6H-indolo[2,3-b]quinoxaline exhibits a low reduction potential (-2.01 V vs Fc/Fc+), high solubility (>2.7 M in acetonitrile), and remarkable stability (99.86% capacity retention over 49.5 h (202 cycles) of H-cell cycling). This anolyte was paired with N-(2-(2-methoxyethoxy)-ethyl)phenothiazine (MEEPT) to achieve a 2.3 V all-organic NARFB exhibiting 95.8% capacity retention over 75.1 h (120 cycles) of cycling.

9.
J Am Chem Soc ; 145(50): 27450-27458, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079611

RESUMO

Upcycling plastic waste into reprocessable materials with performance-advantaged properties would contribute to the development of a circular plastics economy. Here, we modify branched polyolefins and postconsumer polyethylene through a versatile C-H functionalization approach using thiosulfonates as a privileged radical group transfer functionality. Cross-linking the functionalized polyolefins with polytopic amines provided dynamically cross-linked polyolefin networks enabled by associative bond exchange of diketoenamine functionality. A combination of resonant soft X-ray scattering and grazing incidence X-ray scattering revealed hierarchical phase morphology in which diketoenamine-rich microdomains phase-separate within amorphous regions between polyolefin crystallites. The combination of dynamic covalent cross-links and microphase separation results in useful and improved mechanical properties, including a ∼4.5-fold increase in toughness, a reduction in creep deformation at temperatures relevant to use, and high-temperature structural stability compared to the parent polyolefin. The dynamic nature of diketoenamine cross-links provides stress relaxation at elevated temperatures, which enabled iterative reprocessing of the dynamic covalent polymer network with little cycle-to-cycle property fade. The ability to convert polyolefin waste into a reprocessable thermoformable material with attractive thermomechanical properties provides additional optionality for upcycling to enable future circularity.

10.
J Am Chem Soc ; 145(39): 21527-21537, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733607

RESUMO

Polyethylene is a commodity material that is widely used because of its low cost and valuable properties. However, the lack of functional groups in polyethylene limits its use in applications that include adhesives, gas barriers, and plastic blends. The inertness of polyethylene makes it difficult to install groups that would enhance its properties and enable programmed chemical decomposition. To overcome these deficiencies, the installation of pendent functional groups that imbue polyethylene with enhanced properties is an attractive strategy to overcome its inherent limitations. Here, we describe strategies to derivatize oxidized polyethylene that contains both ketones and alcohols to monofunctional variants with bulk properties superior to those of unmodified polyethylene. Iridium-catalyzed transfer dehydrogenation with acetone furnished polyethylenes with only ketones, and ruthenium-catalyzed hydrogenation with hydrogen furnished polyethylenes with only alcohols. We demonstrate that the ratio of these functional groups can be controlled by reduction with stoichiometric hydride-containing reagents. The ketones and alcohols serve as sites to introduce esters and oximes onto the polymer, thereby improving surface and bulk properties over those of polyethylene. These esters and oximes were removed by hydrolysis to regenerate the original oxygenated polyethylenes, showing how functionalization can lead to materials with circularity. Waste polyethylenes were equally amenable to oxidative functionalization and derivatization of the oxidized material, showing that this low- or negative-value feedstock can be used to prepare materials of higher value. Finally, the derivatized polymers with distinct solubilities were separated from mechanically mixed plastic blends by selective dissolution, demonstrating that functionalization can lead to novel approaches for distinguishing and separating polymers from a mixture.

11.
Acc Chem Res ; 55(19): 2753-2765, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36108255

RESUMO

The mismanagement and leakage of plastic waste into the environment are failures of modern society. Once in the environment, plastic waste degrades into microplastics on a time scale dependent on the resin chemistry and the associated biotic or abiotic process. The high surface area of microplastics results in the contamination of ecosystems through the leaching of toxic chemicals compounded with plastics during manufacturing. In addition, the small size of microplastics increases the likelihood that they will be inhaled or ingested, which has led to the bioaccumulation of microplastics with documented harm. Furthermore, microplastics are more readily aerosolized and distributed by weather systems to areas remote from locations where plastic waste has been mismanaged. Consequently, the carbon cycle must now account for plastic waste discharge, degradation, and dispersal in the environment after the end of useful life on a global scale.Circularity in plastics recycling endeavors to solve the waste problem while promoting greater sustainability. Circularity can be conducted at different stages in the plastics life cycle. Post-industrial recycling enabling scrap recovery in manufacturing is desirable for industrial material efficiency. However, the degradation of polymer chains currently limits the extent to which scrap recovery may be practiced repeatedly on the same material, particularly when the conversion of secondary resin to various plastic products is intolerant to deviations in polymer properties. Post-consumer recycling, on the other hand, is desirable for erasing the manufacturing history and use history of plastic-containing products. Post-consumer recycling involves cleaning and sorting plastic waste into bales, followed by mechanical recycling to produce dense feedstocks for downstream chemical processes required for deconstruction, monomer refinement, and secondary resin production. The efficiency and intensity of chemical processes used to recover reusable monomers or polymers remain low for most plastics. Consequently, there is an urgent need for novel polymers with useful or advantageous properties designed for recycling by addressing the challenges of resource recovery for reuse.In this Account, I discuss the design, discovery, and development of circular plastics based on the chemistry of polydiketoenamines. The diketoenamine bond provides a vantage point for the creation of thermoplastics, elastomers, and thermosets from polytopic triketone and amine monomers. The dynamic covalent character of the diketoenamine bond can be exploited during scrap recovery to provide resilience during mechanical recycling, maintaining baseline properties of the primary resin through multiple cycles of reuse. Furthermore, the hydrolyzability of the diketoenamine bond in strong acid can be exploited for efficient monomer recovery during chemical recycling. A systems-level analysis of polydiketoenamine circularity reveals substantive benefits in low-carbon manufacturing as well as a context to quantify the market potential, identifying use cases where circularity might be most effective. Leveraging these insights, it is possible to guide the process chemistry development necessary to scale monomer and resin production to meet imminent needs for more circular plastics in the market. These insights also provide a glimpse into the underlying molecular mechanisms critical to circularity in a new plastics economy while firmly establishing a role for creativity in polymer chemistry to provide innovative solutions.


Assuntos
Microplásticos , Plásticos , Aminas , Carbono , Ecossistema , Elastômeros , Polímeros
12.
Proc Natl Acad Sci U S A ; 117(15): 8360-8365, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32220955

RESUMO

Natural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled. Sacs with homogeneous and heterogeneous surfaces are hung from the surface and, by capillary forces, form well-ordered arrays. Locomotion and rotation can be achieved by embedding magnetic microparticles within the assemblies. Direct contact of the droplet with air enables in situ manipulation and compartmentalized cascading chemical reactions with selective transport. Applications including functional microreactors, motors, and biomimetic robots are evident.

13.
Angew Chem Int Ed Engl ; 62(36): e202307713, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37452006

RESUMO

Dynamic covalent bonding has emerged as a mean by which stresses in a network can be relaxed. Here, the strength of the bonding of ligands to nanoparticles at the interface between two immiscible liquids affect the same results in jammed assemblies of nanoparticle surfactants. Beyond a critical degree of overcrowding induced by the compression of jammed interfacial assemblies, the bonding of ligands to nanoparticles (NPs) can be broken, resulting in a desorption of the NPs from the interface. This reduces the areal density of nanoparticle surfactants at the interface, allowing the assemblies to relax, not to a fluid state but rather another jammed state. The relaxation of the wrinkles caused by the compression reflects the tendency of these assemblies to eliminate areas of high curvature, favoring a more planar geometry. This enabled the generation of giant vesicular and multivesicular structures from these assemblies.

14.
J Am Chem Soc ; 144(9): 3979-3988, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35196003

RESUMO

Chemical systems may be maintained far from equilibrium by sequestering otherwise reactive species into different microenvironments. It remains a significant challenge to control the amount of chemical energy stored in such systems and to utilize it on demand to perform useful work. Here, we show that redox-active molecules compartmentalized in multiphasic structured-liquid devices can be charged and discharged to power a load on an external circuit. The two liquid phases of these devices feature charge-complementary polyelectrolytes that serve a dual purpose: they generate an ionically conductive coacervate membrane at the liquid-liquid interface, providing structural support; they also mitigate active-material crossover between phases via ion pairing with the oppositely charged anolyte and catholyte active materials. Structured-liquid batteries enabled by this design were rechargeable over hundreds of hours. We envision that these devices may be integrated with soft electronics to enable functional circuits for smart textiles, medical implants, and wearables.


Assuntos
Fontes de Energia Elétrica , Têxteis , Condutividade Elétrica , Eletrônica
15.
Nano Lett ; 21(17): 7116-7122, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448588

RESUMO

Fine control over the mechanical properties of thin sheets underpins transcytosis, cell shape, and morphogenesis. Applying these principles to artificial, liquid-based systems has led to reconfigurable materials for soft robotics, actuation, and chemical synthesis. However, progress is limited by a lack of synthetic two-dimensional membranes that exhibit tunable mechanical properties over a comparable range to that seen in nature. Here, we show that the bending modulus, B, of thin assemblies of nanoparticle surfactants (NPSs) at the oil-water interface can be varied continuously from sub-kBT to 106kBT, by varying the ligands and particles that comprise the NPS. We find extensive departure from continuum behavior, including enormous mechanical anisotropy and a power law relation between B and the buckling spectrum width. Our findings provide a platform for shape-changing liquid devices and motivate new theories for the description of thin-film wrinkling.


Assuntos
Nanopartículas , Tensoativos , Anisotropia
16.
Nat Mater ; 19(7): 758-766, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32341510

RESUMO

Dendrite formation during electrodeposition while charging lithium metal batteries compromises their safety. Although high-shear-modulus (Gs) solid-ion conductors (SICs) have been prioritized to resolve the pressure-driven instabilities that lead to dendrite propagation and cell shorting, it is unclear whether these or alternatives are needed to guide uniform lithium electrodeposition, which is intrinsically density-driven. Here, we show that SICs can be designed within a universal chemomechanical paradigm to access either pressure-driven dendrite-blocking or density-driven dendrite-suppressing properties, but not both. This dichotomy reflects the competing influence of the SIC's mechanical properties and the partial molar volume of Li+ ([Formula: see text]) relative to those of the lithium anode (GLi and VLi) on plating outcomes. Within this paradigm, we explore SICs in a previously unrecognized dendrite-suppressing regime that are concomitantly 'soft', as is typical of polymer electrolytes, but feature an atypically low [Formula: see text] that is more reminiscent of 'hard' ceramics. Li plating (1 mA cm-2; T = 20 °C) mediated by these SICs is uniform, as revealed using synchrotron hard X-ray microtomography. As a result, cell cycle life is extended, even when assembled with thin Li anodes (~30 µm) and either high-voltage NMC-622 cathodes (1.44 mAh cm-2) or high-capacity sulfur cathodes (3.02 mAh cm-2).

17.
Angew Chem Int Ed Engl ; 60(22): 12438-12445, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33580625

RESUMO

Aqueous rechargeable zinc metal batteries promise attractive advantages including safety, high volumetric energy density, and low cost; however, such benefits cannot be unlocked unless Zn reversibility meets stringent commercial viability. Herein, we report remarkable improvements on Zn reversibility in aqueous electrolytes when phosphonium-based cations are used to reshape interfacial structures and interphasial chemistries, particularly when their ligands contain an ether linkage. This novel aqueous electrolyte supports unprecedented Zn reversibility by showing dendrite-free Zn plating/stripping for over 6400 h at 0.5 mA cm-2 , or over 280 h at 2.5 mA cm-2 , with coulombic efficiency above 99 % even with 20 % Zn utilization per cycle. Excellent full cell performance is demonstrated with Na2 V6 O16 ⋅1.63 H2 O cathode, which cycles for 2000 times at 300 mA g-1 . The microscopic characterization and modeling identify the mechanism of unique interphase chemistry from phosphonium and its functionalities as the key factors responsible for dictating reversible Zn chemistry.

18.
Nano Lett ; 19(2): 1387-1394, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30673293

RESUMO

To suppress dendrite formation in lithium metal batteries, high cation transference number electrolytes that reduce electrode polarization are highly desirable, but rarely available using conventional liquid electrolytes. Here, we show that liquid electrolytes increase their cation transference numbers (e.g., ∼0.2 to >0.70) when confined to a structurally rigid polymer host whose pores are on a similar length scale (0.5-2 nm) as the Debye screening length in the electrolyte, which results in a diffuse electrolyte double layer at the polymer-electrolyte interface that retains counterions and reject co-ions from the electrolyte due to their larger size. Lithium anodes coated with ∼1 µm thick overlayers of the polymer host exhibit both a low area-specific resistance and clear dendrite-suppressing character, as evident from their performance in Li-Li and Li-Cu cells as well as in post-mortem analysis of the anode's morphology after cycling. High areal capacity Li-S cells (4.9 mg cm-2; 8.2 mAh cm-2) implementing these high transference number polymer-hosted liquid electrolytes were remarkably stable, considering ∼24 µm of lithium was electroreversibly deposited in each cycle at a C-rate of 0.2. We further identified a scalable manufacturing path for these polymer-coated lithium electrodes, which are drop-in components for lithium metal battery manufacturing.

19.
Angew Chem Int Ed Engl ; 59(2): 735-739, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31614053

RESUMO

Control of equilibrium and non-equilibrium thermomechanical behavior of poly(diketoenamine) vitrimers is shown by incorporating linear polymer segments varying in molecular weight (MW) and conformational degrees of freedom into the dynamic covalent network. While increasing MW of linear segments yields a lower storage modulus at the rubbery plateau after softening above the glass transition (Tg ), both Tg and the characteristic time of stress relaxation are independently governed by the conformational entropy of the embodied linear segments. Activation energies for bond exchange in the solid state are lower for networks incorporating flexible chains; the network topology freezing temperature decreases with increasing MW of flexible linear segments but increases with increasing MW of stiff segments. Vitrimer reconfigurability is therefore influenced not only by the energetics of bond exchange for a given network density, but also the entropy of polymer chains within the network.

20.
Angew Chem Int Ed Engl ; 59(51): 23180-23187, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32881197

RESUMO

Super-concentrated "water-in-salt" electrolytes recently spurred resurgent interest for high energy density aqueous lithium-ion batteries. Thermodynamic stabilization at high concentrations and kinetic barriers towards interfacial water electrolysis significantly expand the electrochemical stability window, facilitating high voltage aqueous cells. Herein we investigated LiTFSI/H2 O electrolyte interfacial decomposition pathways in the "water-in-salt" and "salt-in-water" regimes using synchrotron X-rays, which produce electrons at the solid/electrolyte interface to mimic reductive environments, and simultaneously probe the structure of surface films using X-ray diffraction. We observed the surface-reduction of TFSI- at super-concentration, leading to lithium fluoride interphase formation, while precipitation of the lithium hydroxide was not observed. The mechanism behind this photoelectron-induced reduction was revealed to be concentration-dependent interfacial chemistry that only occurs among closely contact ion-pairs, which constitutes the rationale behind the "water-in-salt" concept.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA