RESUMO
Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.
Assuntos
Citoesqueleto de Actina/metabolismo , Cardiomiopatia Dilatada/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Citoesqueleto de Actina/genética , Animais , Animais Recém-Nascidos , Cardiomiopatia Dilatada/embriologia , Cardiomiopatia Dilatada/genética , Células Cultivadas , Proteínas do Citoesqueleto/genética , Recuperação de Fluorescência Após Fotodegradação , Genes Letais/genética , Coração/embriologia , Coração/fisiopatologia , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Contração Muscular/genética , Contração Muscular/fisiologia , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Sarcômeros/genética , Sarcômeros/metabolismo , Análise de SobrevidaRESUMO
Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM-FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2-mRFP) and EGFR (EGFR-eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2-mRFP with EGFR-eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR-eGFP per cluster. In contrast, the pool of EGFR-eGFP without Grb2-mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR-eGFP and Grb2-mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit.
Assuntos
Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/metabolismo , Animais , Receptores ErbB/química , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Proteína Adaptadora GRB2/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Modelos Moleculares , Modelos Teóricos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
The activation of the epidermal growth factor receptor (EGFR) kinase requires ligand binding to the extracellular domain (ECD). Previous reports demonstrate that the EGFR-ECD can be crystallized in two conformations - a tethered monomer or, in the presence of ligand, an untethered back-to-back dimer. We use Biosensor analysis to demonstrate that even in the monomeric state different C-terminal extensions of both truncated (EGFR(1-501))-ECD and full-length EGFR(1-621)-ECD can change the conformation of the ligand-binding site. The binding of a monoclonal antibody mAb806, which recognizes the dimer interface, to the truncated EGFR(1-501)-Fc fusion protein is reduced in the presence of ligand, consistent with a change in conformation. On the cell surface, the presence of erythroblastosis B2 (erbB2) increases the binding of mAb806 to the EGFR. The conformation of the erbB2: EGFR heterodimer interface changes when the cells are treated with epidermal growth factor (EGF). We propose that ligand induces kinase-inactive, pre-formed EGFR dimers and heterodimers to change conformation leading to kinase-active tetramers, where kinase activation occurs via an asymmetric interaction between EGFR dimers.
Assuntos
Receptores ErbB/química , Ligantes , Animais , Anticorpos Monoclonais/química , Técnicas Biossensoriais , Linhagem Celular , Dimerização , Epitopos/química , Corantes Fluorescentes/química , Células HEK293 , Humanos , Cinética , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de ProteínaRESUMO
The epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family of receptors. Structural studies have revealed two distinct conformations of the ectodomain of the EGFR: a compact, tethered, conformation and an untethered extended conformation. In the context of a monomer-dimer transition model, ligand binding is thought to untether the monomeric receptor leading to exposure of a dimerization arm which then facilitates receptor dimerization, kinase activation and signaling. For receptors directed orthogonal to the local plane of the membrane surface, this would lead to a large change in the distance of the receptor N-terminus from the membrane surface. To investigate this experimentally, we produced stable BaF/3 cell lines expressing a biochemically functional yellow fluorescent protein (YFP)-EGFR chimera and determined the vertical separation of the N-terminal YFP tag from the membrane using fluorescence resonance energy transfer (FRET) techniques. Homo-FRET/rFLIM was employed to determine the presence of unliganded dimers and to measure the average distance between the N-terminal tags in those dimers. The results suggest that EGF-induced activation occurs within or between pre-formed and extended dimers with very little change in the extension of the N-terminii from the membrane surface. These results provide constraints on possible models for EGFR activation.
Assuntos
Proteínas de Bactérias/química , Receptores ErbB/química , Proteínas Luminescentes/química , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
MOTIVATION: In the age of big data, the amount of scientific information available online dwarfs the ability of current tools to support researchers in locating and securing access to the necessary materials. Well-structured open data and the smart systems that make the appropriate use of it are invaluable and can help health researchers and professionals to find the appropriate information by, e.g., configuring the monitoring of information or refining a specific query on a disease. METHODS: We present an automated text classifier approach based on the MEDLINE/MeSH thesaurus, trained on the manual annotation of more than 26 million expert-annotated scientific abstracts. The classifier was developed tailor-fit to the public health and health research domain experts, in the light of their specific challenges and needs. We have applied the proposed methodology on three specific health domains: the Coronavirus, Mental Health and Diabetes, considering the pertinence of the first, and the known relations with the other two health topics. RESULTS: A classifier is trained on the MEDLINE dataset that can automatically annotate text, such as scientific articles, news articles or medical reports with relevant concepts from the MeSH thesaurus. CONCLUSIONS: The proposed text classifier shows promising results in the evaluation of health-related news. The application of the developed classifier enables the exploration of news and extraction of health-related insights, based on the MeSH thesaurus, through a similar workflow as in the usage of PubMed, with which most health researchers are familiar.
Assuntos
Comunicação em Saúde/normas , MEDLINE/organização & administração , Medical Subject Headings , Pesquisa/organização & administração , Big Data , COVID-19/epidemiologia , Classificação , Diabetes Mellitus/epidemiologia , Humanos , MEDLINE/normas , Saúde Mental/estatística & dados numéricos , SARS-CoV-2 , SemânticaRESUMO
X-ray structural studies revealed two conformations of the epidermal growth factor receptor (EGFR) ectodomain (ECD): a compact, tethered conformation in the absence of EGF and an untethered or extended conformation in the presence of EGF. An EGFR-ECD derivative with a monomeric red fluorescent protein (mRFP) at the N-terminus and an enhanced green fluorescent protein (eGFP) at the C-terminus (dual-tag-EGFR-ECD) was created and characterized. The dual-tag-EGFR-ECD construct was shown to have high affinity (nanomolar range) for both EGF and EGFR monoclonal antibody (mAb528). The dual-tag-EGFR-ECD was further characterized by fluorescence-detected analytical ultracentrifugation, lifetime FRET, and fluorescence anisotropy. We found no evidence of a tethered unliganded conformation, nor did we observe a large shape change upon ligand binding as predicted by the crystal models. Increases in steady-state anisotropy upon binding of EGF to the dual-tag-EGFR-ECD were observed and interpreted as changes in the protein flexibility and dynamics. We conclude the fluorescent protein tags perturb the EGFR-ECD structure, making it extended with a 50-fold higher affinity for EGF relative to that of the nontagged EGFR-ECD.
Assuntos
Receptores ErbB/química , Proteínas de Fluorescência Verde/química , Células Cultivadas , Dimerização , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , TransfecçãoRESUMO
OBJECTIVE: The carotid web (CW) is an underrecognized source of cryptogenic, embolic stroke in patients younger than 55 years of age, with up to 37% of these patients found to have CW on angiography. Currently, there are little data detailing the best treatment practices to reduce the risk of recurrent stroke in these patients. The authors describe their institutional surgical experience with patients treated via carotid endarterectomy (CEA) for a symptomatic internal carotid artery web. METHODS: A retrospective, observational cohort study was performed including all patients presenting to the authors' institution with CW. All patients who were screened underwent either carotid artery stenting (CAS) or CEA after presentation with ischemic stroke from January 2019 to February 2020. From this sample, patients with suggestive radiological features and pathologically confirmed CW who underwent CEA were identified. Patient demographics, medical histories, radiological images, surgical results, and clinical outcomes were collected and described using descriptive statistics. RESULTS: A total of 45 patients with symptomatic carotid lesions were treated at the authors' institution during the time period. Twenty patients underwent CAS, 1 of them for a CW. Twenty-five patients were treated via CEA, and of these, 6 presented with ischemic strokes ipsilateral to CWs, including 3 patients who presented with recurrent strokes. The mean patient age was 55 ± 12.6 years and 5 of 6 were women. CT angiography or digital subtraction angiography demonstrated the presence of CWs ipsilateral to the stroke in all patients. All patients underwent resection of CWs using CEA. There were no permanent procedural complications and no patients had stroke recurrence following intervention at the latest follow-up (mean 6.1 ± 4 months). One patient developed mild tongue deviation most likely related to retraction, with complete recovery at follow-up. CONCLUSIONS: CEA is a safe and feasible treatment for symptomatic carotid webs and should be considered a viable alternative to CAS in this patient population.
RESUMO
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Assuntos
Citoesqueleto/metabolismo , Sarcômeros/metabolismo , Actinas/metabolismo , Animais , Citoesqueleto/fisiologia , Humanos , Contração Muscular , Miosinas/metabolismo , Sarcômeros/fisiologiaRESUMO
Infection of ruminants with most (but not all) serotypes of bluetongue virus (BTV) leads to a highly blood cell-associated viremia that may be prolonged but not persistent. Furthermore, recovered animals are resistant to reinfection with the homologous virus serotype, which is the basis for vaccination strategies to prevent BTV infection and the clinical disease (bluetongue) that it causes in domestic livestock. BTV infection is initiated at the site of virus inoculation and the associated draining lymph node, from where the virus is then spread in lymph cells to the systemic circulation and secondary sites of replication. Replication of BTV in target cells, notably mononuclear phagocytic cells (dendritic cells and macrophages) and endothelium, leads to the generation of the innate and adaptive immune responses that mediate both initial virus clearance and subsequent resistance to infection with the homologous virus serotype. The goal of this review is to summarize current understanding of these innate and adaptive immune responses of animals to BTV infection.
Assuntos
Anticorpos Antivirais/sangue , Vírus Bluetongue/imunologia , Interferon Tipo I/imunologia , Gado , Ruminantes , AnimaisAssuntos
Transplante de Fígado/métodos , Peritonite/terapia , Irrigação Terapêutica/métodos , Artroplastia de Quadril/efeitos adversos , Doenças do Ceco/etiologia , Feminino , Hepatite C Crônica/cirurgia , Humanos , Imunossupressores/uso terapêutico , Perfuração Intestinal/etiologia , Cirrose Hepática/cirurgia , Pessoa de Meia-Idade , Fraturas Periprotéticas/complicações , Tacrolimo/uso terapêuticoRESUMO
Clathrin-associated endocytic adapters recruit cargoes to coated pits as a first step in endocytosis. We developed an unbiased quantitative proteomics approach to identify and quantify glycoprotein cargoes for an endocytic adapter, Dab2. Surface levels of integrins beta1, alpha1, alpha2, and alpha3 but not alpha5 or alphav chains were specifically increased on Dab2-deficient HeLa cells. Dab2 colocalizes with integrin beta1 in coated pits that are dispersed over the cell surface, suggesting that it regulates bulk endocytosis of inactive integrins. Depletion of Dab2 inhibits cell migration and polarized movement of integrin beta1 and vinculin to the leading edge. By manipulating intracellular and surface integrin beta1 levels, we show that migration speed correlates with the intracellular integrin pool but not the surface level. Together, these results suggest that Dab2 internalizes integrins freely diffusing on the cell surface and that Dab2 regulates migration, perhaps by maintaining an internal pool of integrins that can be recycled to create new adhesions at the leading edge.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Integrinas/metabolismo , Proteômica , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Proteínas Reguladoras de Apoptose , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Células HeLa , Humanos , Integrina alfa1/metabolismo , Integrina beta1/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Proteínas Supressoras de TumorRESUMO
Although the classification of cell types often relies on the identification of cell surface proteins as differentiation markers, flow cytometry requires suitable antibodies and currently permits detection of only up to a dozen differentiation markers in a single measurement. We use multiplexed mass-spectrometric identification of several hundred N-linked glycosylation sites specifically from cell surface-exposed glycoproteins to phenotype cells without antibodies in an unbiased fashion and without a priori knowledge. We apply our cell surface-capturing (CSC) technology, which covalently labels extracellular glycan moieties on live cells, to the detection and relative quantitative comparison of the cell surface N-glycoproteomes of T and B cells, as well as to monitor changes in the abundance of cell surface N-glycoprotein markers during T-cell activation and the controlled differentiation of embryonic stem cells into the neural lineage. A snapshot view of the cell surface N-glycoproteins will enable detection of panels of N-glycoproteins as potential differentiation markers that are currently not accessible by other means.
Assuntos
Algoritmos , Membrana Celular/metabolismo , Glicoproteínas/análise , Glicoproteínas/química , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Dados de Sequência MolecularRESUMO
Interactions between fractalkine (CX3CL1) and its receptor, CX3CR1, mediate leukocyte adhesion, activation, and trafficking. The respiratory syncytial virus (RSV) G protein has a CX3C chemokine motif that can bind CX3CR1 and modify CXCL1-mediated responses. In this study, we show that expression of the RSV G protein or the G protein CX3C motif during infection is associated with reduced CX3CR1+ T cell trafficking to the lung, reduced frequencies of RSV-specific, MHC class I-restricted IFN-gamma-expressing cells, and lower numbers of IL-4- and CX3CL1-expressing cells. In addition, we show that CX3CR1+ cells constitute a major component of the cytotoxic response to RSV infection. These results suggest that G protein and the G protein CX3C motif reduce the antiviral T cell response to RSV infection.
Assuntos
Motivos de Aminoácidos , Quimiocinas CX3C/genética , Receptores de Quimiocinas/biossíntese , Vírus Sinciciais Respiratórios/imunologia , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Receptor 1 de Quimiocina CX3C , Inibição de Migração Celular , Movimento Celular/imunologia , Células Cultivadas , Quimiocinas CX3C/biossíntese , Feminino , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-4/metabolismo , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Quimiocinas/antagonistas & inibidores , Vírus Sinciciais Respiratórios/genética , Linfócitos T/metabolismo , Linfócitos T/patologia , Linfócitos T/virologia , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genéticaRESUMO
Respiratory syncytial virus (RSV) is a primary cause of morbidity and life-threatening lower respiratory tract disease in infants and young children. Children with acute RSV bronchiolitis often develop respiratory sequelae, but the disease mechanisms are poorly understood. Mounting evidence suggests that RSV may mediate persistent infection. Using immunohistochemistry to identify RSV and RSV-infected cell types, we show that RSV infects primary neurons and neuronal processes that innervate the lungs through a process that involves RSV G protein and the G protein CX3C motif. These findings suggest a mechanism for disease chronicity and have important implications for RSV disease intervention strategies.
Assuntos
Pulmão/virologia , Neurônios/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais de Fusão/metabolismo , Criança , Pré-Escolar , Humanos , Lactente , Pulmão/inervação , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/imunologiaRESUMO
The epidermal growth factor receptor (EGFR) is a member of the erbB tyrosine kinase family of receptors. For many years it has been believed that receptor activation occurs via a monomer-dimer transition that is associated with a conformational change to activate the kinase. However, little is known about the quaternary state of the receptor at normal levels of expression (<10(5) receptors/cell). We employed multidimensional microscopy techniques to gain insight into the state of association of the human EGFR, in the absence and presence of ligand, on the surface of intact BaF/3 cells (50,000 receptors/cell). Image correlation microscopy of an EGFR-enhanced green fluorescent protein chimera was used to establish an average degree of aggregation on the submicron scale of 2.2 receptors/cluster in the absence of ligand increasing to 3.7 receptors/cluster in the presence of ligand. Energy transfer measurements between mixtures of fluorescein isothiocyanate-EGF and Alexa 555-EGF were performed using fluorescence lifetime imaging microscopy as a function of the donor: acceptor labeling ratio to gain insight into the spatial disposition of EGFR ligand binding sites on the nanometer scale. In the context of a two-state Förster resonance energy transfer (FRET)/non-FRET model, the data are consistent with a minimum transfer efficiency of 75% in the FRET population. The microscopy data are related to biophysical data on the EGFR in the A431 cell line and the three-dimensional structure of the ligated EGFR extracellular domain. In the context of a monomer-dimer-oligomer model, the biophysical data are consistent with a significant fraction of ligated EGFR tetramers comprising two dimers juxtaposed in a side-by-side (or slightly staggered) arrangement. Our data are consistent with a specific higher order association of the ligand-bound EGFR on the nanometer scale and indicate the existence of distinct signaling entities beyond the level of the EGFR dimer which could play an important role in receptor transactivation.
Assuntos
Membrana Celular/metabolismo , Receptores ErbB/química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Meios de Cultura Livres de Soro/farmacologia , Dimerização , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Cinética , Ligantes , Camundongos , Microscopia , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Ativação Transcricional , Tirosina/químicaRESUMO
Members of the family Halobacteriaceae in the domain Archaea are obligate extreme halophiles. They occupy a variety of hypersaline environments, and their cellular biochemistry functions in a nearly saturated salty milieu. Despite extensive study, a detailed analysis of their growth kinetics is missing. To remedy this, Arrhenius plots for 14 type species of the family were generated. These organisms had maximum growth temperatures ranging from 49 to 58 degrees C. Nine of the organisms exhibited a single temperature optimum, while five grew optimally at more than one temperature. Generation times at these optimal temperatures ranged from 1.5 h (Haloterrigena turkmenica) to 3.0 h (Haloarcula vallismortis and Halorubrum saccharovorum). All shared an inflection point at 31 +/- 4 degrees C, and the temperature characteristics for 12 of the 14 type species were nearly parallel. The other two species (Natronomonas pharaonis and Natronorubrum bangense) had significantly different temperature characteristics, suggesting that the physiology of these strains is different. In addition, these data show that the type species for the family Halobacteriaceae share similar growth kinetics and are capable of much faster growth at higher temperatures than those previously reported.