RESUMO
BACKGROUND: The efficacy and safety of complement inhibition in COVID-19 patients is unclear. METHODS: A multicenter randomized controlled, open-label trial. Hospitalized COVID-19 patients with signs of systemic inflammation and hypoxemia (PaO2/FiO2 below 350 mmHg) were randomized (2:1 ratio) to receive standard of care with or without the C5 inhibitor zilucoplan daily for 14 days, under antibiotic prophylaxis. The primary outcome was improvement in oxygenation at day 6 and 15. RESULTS: 81 patients were randomly assigned to zilucoplan (n = 55) or the control group (n = 26). 78 patients were included in the safety and primary analysis. Most were men (87%) and the median age was 63 years. The mean improvement in PaO2/FiO2 from baseline to day 6 was 56.4 mmHg in the zilucoplan group and 20.6 mmHg in the control group (mean difference + 35.8; 95% confidence interval (CI) - 9.4 to 80.9; p = 0.12), an effect also observed at day 15. Day 28 mortality was 9% in the zilucoplan and 21% in the control group (odds ratio 0.4; 95% CI 0.1 to 1.5). At long-term follow up, the distance walked in a 6-min test was 539.7 m in zilucoplan and 490.6 m in the control group (p = 0.18). Zilucoplan lowered serum C5b-9 (p < 0.001) and interleukin-8 (p = 0.03) concentration compared with control. No relevant safety differences between the zilucoplan and control group were identified. CONCLUSION: Administration of zilucoplan to COVID-19 patients in this proof-of-concept randomized trial was well tolerated under antibiotic prophylaxis. While not reaching statistical significance, indicators of respiratory function (PaO2/FiO2) and clinical outcome (mortality and 6-min walk test) suggest that C5 inhibition might be beneficial, although this requires further research in larger randomized studies.
Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Complemento C5 , Inativadores do Complemento/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos Cíclicos , SARS-CoV-2 , Resultado do TratamentoRESUMO
INTRODUCTION: Intravenous vedolizumab is a widely used monoclonal antibody for outpatients with inflammatory bowel disease. Drug preparation is performed on the day of administration, but is time consuming, causing unnecessary in-hospital patient delay and inefficient logistics for preparation and distribution. Storage of vedolizumab ready-to-administer infusions and distribution via pneumatic air tubes could streamline logistics in the outpatient setting. The aim of this study was to test the shelf life and stability of ready-to-administer intravenous infusion bags containing vedolizumab. METHODS: For assessing in-use shelf life, the reconstituted product (300 mg fixed dose) was diluted to a concentration of 1.2 mg/mL in 0.9% NaCl under aseptic conditions, and stored in polyolefin infusion bags at 2-8°C prior to analysis. On replicate samples, we measured concentration, physical and chemical stability using sodium dodecyl sulphate polyacrylamide gel electrophoresis, size exclusion chromatography, and multi-angle laser light scattering, as well as biological activity using a biolayer interferometry assay to study target engagement, and endotoxin content to assess microbiological stability. Stability of ready-to-use vedolizumab was assessed also after transportation via pneumatic tube system. Samples were taken at different time points over an observation period of 30 days on four replicate samples. RESULTS: For all parameters assessed, the ready-to-use solution of vedolizumab remained stable over a period of at least 30 days. There were no signs of protein aggregation, chemical instability, or loss of binding of the antibody to the α4ß7 integrin target. There was no increase in endotoxin concentration over time. No significant difference was seen in antibody structural stability and protein aggregation between samples before and after transportation via pneumatic tube system. CONCLUSION: When prepared under aseptic conditions, dissolved ready-to-administer vedolizumab infusion bags can be stored long term at 2-8°C and transported via pneumatic air tube, without observable loss of antibody stability or binding activity.