Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Biol Chem ; 300(8): 107504, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944123

RESUMO

Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.

2.
RNA ; 29(3): 273-281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596670

RESUMO

Z-RNA is a higher-energy, left-handed conformation of RNA, whose function has remained elusive. A growing body of work alludes to regulatory roles for Z-RNA in the immune response. Here, we review how Z-RNA features present in cellular RNAs-especially containing retroelements-could be recognized by a family of winged helix proteins, with an impact on host defense. We also discuss how mutations to specific Z-contacting amino acids disrupt their ability to stabilize Z-RNA, resulting in functional losses. We end by highlighting knowledge gaps in the field, which, if addressed, would significantly advance this active area of research.


Assuntos
DNA Forma Z , RNA , RNA/química , Adenosina Desaminase/metabolismo , Imunidade Inata/genética , Aminoácidos , Biologia
3.
Nucleic Acids Res ; 51(8): 3631-3649, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808431

RESUMO

PBRM1 is a subunit of the PBAF chromatin remodeling complex, which is mutated in 40-50% of clear cell renal cell carcinoma patients. It is thought to largely function as a chromatin binding subunit of the PBAF complex, but the molecular mechanism underlying this activity is not fully known. PBRM1 contains six tandem bromodomains which are known to cooperate in binding of nucleosomes acetylated at histone H3 lysine 14 (H3K14ac). Here, we demonstrate that the second and fourth bromodomains from PBRM1 also bind nucleic acids, selectively associating with double stranded RNA elements. Disruption of the RNA binding pocket is found to compromise PBRM1 chromatin binding and inhibit PBRM1-mediated cellular growth effects.


Assuntos
Cromatina , Neoplasias Renais , Humanos , Cromatina/genética , RNA/genética , Proteínas Nucleares/metabolismo , Histonas/metabolismo , Neoplasias Renais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
4.
Biochemistry ; 63(6): 777-787, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437710

RESUMO

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG)n repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption. Here, we studied the binding of Zα fromHomo sapiens ADAR1 to a locked "A-type" version of the (CpG)3 construct (LNA (CpG)3) where the sugar pucker is locked into the C3'-endo/C2'-exo conformation, which prevents the duplex from adopting the alternating C2'/C3'-endo sugar puckers found in the Z-conformation. Using NMR and other biophysical techniques, we find that ZαADAR1 binds to the LNA (CpG)3 using a similar interface as for Z-form binding, with a dissociation constant (KD) of ∼4 µM. In contrast to Z-DNA/Z-RNA, where two ZαADAR1 bind to every 6 bp stretch, our data suggests that ZαADAR1 binds to multiple LNA molecules, indicating a completely different binding mode. Because ZαADAR1 binds relatively tightly to a non-Z-form model, its binding to B/A-form helices may need to be considered when experiments are carried out which attempt to identify the Z-form targets of Zα domains. The use of LNA constructs may be beneficial in experiments where negative controls for Z-form adoption are needed.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Conformação de Ácido Nucleico , Sítios de Ligação , RNA , Açúcares , Adenosina Desaminase/metabolismo
5.
J Am Chem Soc ; 146(1): 677-694, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131335

RESUMO

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood. Through a combination of nuclear magnetic resonance (NMR) and other biophysical measurements, we have determined that in the absence of Zα, under low salt conditions at room temperature, d(CpG) and r(CpG) constructs show no observable evidence of transient Z-conformations greater than 0.5% on either the intermediate or slow NMR time scales. At higher temperatures, we observed a transient unfolded intermediate. The ease of melting a nucleic acid duplex correlates with Z-form adoption rates in the presence of Zα. The largest contributing factor to the activation energies of Z-form adoption as calculated by Arrhenius plots is the ease of flipping the sugar pucker, as required for Z-DNA and Z-RNA. Together, these data validate the previously proposed "zipper model" for Z-form adoption in the presence of Zα. Overall, Z-conformations are more likely to be adopted by double-stranded DNA and RNA regions flanked by less stable regions and by RNAs experiencing torsional/mechanical stress.


Assuntos
DNA Forma Z , Ácidos Nucleicos , Conformação de Ácido Nucleico , Sítios de Ligação , DNA/química , RNA
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649199

RESUMO

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.


Assuntos
Melanoma Experimental/imunologia , Células Supressoras Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas de Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
7.
Methods ; 206: 87-98, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35985641

RESUMO

The introduction of the exact nuclear Overhauser enhancement (eNOE) methodology to solution-state nuclear magnetic resonance (NMR) spectroscopy results in tighter distance restraints from NOEs than in convention analysis. These improved restraints allow for higher resolution in structure calculation and even the disentanglement of different conformations of macromolecules. While initial work primarily focused on technical development of the eNOE, structural studies aimed at the elucidation of spatial sampling in proteins and nucleic acids were published in parallel prior to 2018. The period of 2018-2022 saw a continued series of technical innovation, but also major applications addressing biological questions. Here, we review both aspects, covering topics from the implementation of non-uniform sampling of NOESY buildups, novel pulse sequences, adaption of the eNOE to solid-state NMR, advances in eNOE data analysis, and innovations in structural ensemble calculation, to applications to protein, RNA, and DNA structure elucidation.


Assuntos
Ácidos Nucleicos , Proteínas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química , RNA
8.
Molecules ; 28(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36677900

RESUMO

Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.


Assuntos
DNA Forma Z , Ácidos Nucleicos , RNA , Conformação de Ácido Nucleico , DNA/química
9.
J Struct Biol ; 214(4): 107914, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341956

RESUMO

The sterile alpha motif (SAM) domains are among the most versatile protein domains in biology, and the variety of the oligomerization states contribute to their diverse roles in many diseases. A better understanding of the structure and dynamics of various SAM domains will provide a scientific basis for drug development targeting them. Here, we used SEC-MALS, HPLC, NMR, and other biophysical techniques to characterize the structural features and dynamics of the SAM1 domain in SASH1. SASH1 is a scaffold protein belonging to the same family as SASH3. Unlike the dimerization seen in SASH3's SAM domain, our SEC-MALS and SE-HPLC showed that SAM1 exists primarily as a less compact monomer with a minor oligomer. NMR assignment, relaxation, and exchange experiments revealed the presence of both a disordered monomer and a more structured oligomer with multiple timescale exchange regimes in solution. Mutagenesis and SE-HPLC showed that D663A/T664K substitutions in SAM1 increased its oligomerization. In sum, this study is the first to characterize a disordered structure for a SAM domain, provides additional evidence and framework for the diversity of SAM domains, and identifies a region in SAM1 as a potential starting point to further characterize the structural mechanism of oligomerization of the domain.


Assuntos
Biofísica
10.
FASEB J ; 35(5): e21552, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826788

RESUMO

During episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl- and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response. Previous work suggests that the microbiota-derived tryptophan metabolites 1H-indole and related molecules ("indoles") are protective during intestinal inflammation, although their precise mechanism of action is unclear. In the present work, we serendipitously discovered that indoles are potent and selective inhibitors of MPO. Using both primary human PMNs and recombinant human MPO in a cell-free system, we revealed that indoles inhibit MPO at physiologic concentrations. Particularly, indoles block the chlorinating activity of MPO, a reliable marker for MPO-associated tissue damage, as measured by coulometric-coupled HPLC. Further, we observed direct interaction between indoles and MPO using the established biochemical techniques microscale thermophoresis and STD-NMR. Utilizing a murine colitis model, we demonstrate that indoles inhibit bystander tissue damage, reflected in decreased colon 3-chlorotyrosine and pro-inflammatory chemokine expression in vivo. Taken together, these results identify microbiota-derived indoles that acts as endogenous immunomodulatory compounds through their actions on MPO, suggesting a symbiotic association between the gut microbiota and host innate immune system. Such findings offer exciting new targets for future pharmacological intervention.


Assuntos
Adenocarcinoma/patologia , Efeito Espectador , Colite/patologia , Neoplasias Colorretais/patologia , Indóis/farmacologia , Neutrófilos/enzimologia , Peroxidase/antagonistas & inibidores , Adenocarcinoma/imunologia , Adenocarcinoma/metabolismo , Animais , Colite/imunologia , Colite/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Halogenação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Células Tumorais Cultivadas , Tirosina/metabolismo
11.
PLoS Biol ; 17(1): e3000100, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615611

RESUMO

All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo.


Assuntos
Dineínas do Citoplasma/genética , Dineínas do Citoplasma/metabolismo , Dineínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Sequência Conservada , Complexo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Fuso Acromático
12.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014485

RESUMO

Benzimidazole derivatives are known to be key players in the development of novel anticancer agents. Herein, we aimed to synthesize novel derivatives to target breast cancer. A new series of benzimidazole derivatives conjugated with either six- and five-membered heterocyclic ring or pyrazanobenzimidazoles and pyridobenzimidazole linkers were synthesized yielding compounds 5-8 and 10-14, respectively. Structure elucidation of the newly synthesized compounds was achieved through microanalytical analyses and different spectroscopic techniques (1H, 13C-APT and 1H-1H COSY and IR) in addition to mass spectrometry. A biological study for the newly synthesized compounds was performed against breast cancer cell lines (MCF-7), and the most active compounds were further subjected to normal Human lung fibroblast (WI38) which indicates their safety. It was found that most of them exhibit high cytotoxic activity against breast cancer (MCF-7) and low cytotoxic activity against normal (WI38) cell lines. Compounds 5, 8, and 12, which possess the highest anti-breast cancer activity against the MCF-7 cell line, were selected for Pin1 inhibition assay using tannic acid as a reference drug control. Compound 8 was examined for its effect on cell cycle progression and its ability to apoptosis induction. Mechanistic evaluation of apoptosis induction was demonstrated by triggering intrinsic apoptotic pathways via inducing ROS accumulation, increasing Bax, decreasing Bcl-2, and activation of caspases 6, 7, and 9. Binding to 15N-labeled Pin1 enzyme was performed using state-of-the-art 15N-1H HSQC NMR experiments to describe targeting breast cancer on a molecular level. In conclusion, the NMR results demonstrated chemical shift perturbation (peak shifting or peak disappearance) upon adding compound 12 indicating potential binding. Molecular docking using 'Molecular Operating Environment' software was extremely useful to elucidate the binding mode of active derivatives via hydrogen bonding.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/química , Benzimidazóis/química , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade
13.
J Am Chem Soc ; 143(39): 16055-16067, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579531

RESUMO

Proteins composed of multiple domains allow for structural heterogeneity and interdomain dynamics that may be vital for function. Intradomain structures and dynamics can influence interdomain conformations and vice versa. However, no established structure determination method is currently available that can probe the coupling of these motions. The protein Pin1 contains separate regulatory and catalytic domains that sample "extended" and "compact" states, and ligand binding changes this equilibrium. Ligand binding and interdomain distance have been shown to impact the activity of Pin1, suggesting interdomain allostery. In order to characterize the conformational equilibrium of Pin1, we describe a novel method to model the coupling between intra- and interdomain dynamics at atomic resolution using multistate ensembles. The method uses time-averaged nuclear magnetic resonance (NMR) restraints and double electron-electron resonance (DEER) data that resolve distance distributions. While the intradomain calculation is primarily driven by exact nuclear Overhauser enhancements (eNOEs), J couplings, and residual dipolar couplings (RDCs), the relative domain distribution is driven by paramagnetic relaxation enhancement (PREs), RDCs, interdomain NOEs, and DEER. Our data support a 70:30 population of the compact and extended states in apo Pin1. A multistate ensemble describes these conformations simultaneously, with distinct conformational differences located in the interdomain interface stabilizing the compact or extended states. We also describe correlated conformations between the catalytic site and interdomain interface that may explain allostery driven by interdomain contact.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Peptidilprolil Isomerase de Interação com NIMA/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Conformação Proteica
14.
Bioorg Med Chem ; 31: 115976, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388654

RESUMO

A new series of benzofuran derivatives has been designed and synthesized. The structures of the synthesized compounds have been confirmed by the use of 1H NMR, 13C NMR, 2D 1H-1H NOESY NMR, and IR. Anticancer activity is evaluated against Hepatocellular carcinoma (HePG2), mammary gland breast cancer (MCF-7), Epitheliod carcinoma cervix cancer (Hela) and human prostate cancer (PC3). Compounds 8, 9, and 11 showed the highest activity towards the four cell lines with an IC50 range of 8.49-16.72 µM, 6.55-13.14 µM and 4-8.99 µM respectively in comparison to DOX (4.17-8.87 µM). Phosphatidylinositol-3-kinases (PI3K) inhibition was evaluated against the most active anticancer compounds 8, 9 and 11. Compounds 8, 9 and 11 showed good inhibitory activity against PI3Kα with IC50 values 4.1, 7.8, and 20.5 µM, respectively in comparison to 6.18 µM for the reference compound LY294002. In addition, activity of compounds 8 and 9 on cell cycle arrest and induction of apoptosis in different phases of MCF-7 cells were assessed and detected pre-G1 apoptosis and cell growth arrest at G2/M. Also, both extrinsic and intrinsic apoptosis in MCF-7 cells induced by compounds 8 and 9. Molecular docking, binding affinity surface mapping, and contact preference of the synthesized compounds 8, 9 and 11 against PI3K were estimated and studied computationally using molecular operating environment software (MOE) and showed good interaction with essential residues for inhibition Val851. In addition, antimicrobial activity was evaluated against gram positive isolates as Staphylococcus aureus and Bacillus cereus, gram negative isolate as Escherichia coli, Pseudomonas aeruginosa and antifungal potential against Candida albicans. Compound 17 showed outstanding anti Gram-positive activity with MIC values 8 and 256 µg/mL in Staphylococcus aureus and Bacillus cereus respectively. Also, compounds 15, 17, 18 and 21 showed good anti Gram-negative activity with MIC value 512 µg/mL for all compounds. In addition, the state-of-art quorum sensing (QS) inhibiting effects were detected using Chromobacterium violaceum and compounds 7, 9, 10, 11, and 12 showed good QS inhibition (3, 3, 5, 2, and 7 mm).


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Percepção de Quorum/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
J Biol Chem ; 294(9): 3065-3080, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30598510

RESUMO

Betaglycan (BG) is a membrane-bound co-receptor of the TGF-ß family that selectively binds transforming growth factor-ß (TGF-ß) isoforms and inhibin A (InhA) to enable temporal-spatial patterns of signaling essential for their functions in vivo Here, using NMR titrations of methyl-labeled TGF-ß2 with BG's C-terminal binding domain, BGZP-C, and surface plasmon resonance binding measurements with TGF-ß2 variants, we found that the BGZP-C-binding site on TGF-ß2 is located on the inner surface of its extended finger region. Included in this binding site are Ile-92, Lys-97, and Glu-99, which are entirely or mostly specific to the TGF-ß isoforms and the InhA α-subunit, but they are unconserved in other TGF-ß family growth factors (GFs). In accord with the proposed specificity-determining role of these residues, BG bound bone morphogenetic protein 2 (BMP-2) weakly or not at all, and TGF-ß2 variants with the corresponding residues from BMP-2 bound BGZP-C more weakly than corresponding alanine variants. The BGZP-C-binding site on InhA previously was reported to be located on the outside of the extended finger region, yet at the same time to include Ser-112 and Lys-119, homologous to TGF-ß2 Ile-92 and Lys-97, on the inside of the fingers. Therefore, it is likely that both TGF-ß2 and InhA bind BGZP-C through a site on the inside of their extended finger regions. Overall, these results identify the BGZP-C-binding site on TGF-ß2 and shed light on the specificity of BG for select TGF-ß-type GFs and the mechanisms by which BG influences their signaling.


Assuntos
Inibinas/metabolismo , Proteoglicanas/química , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/química , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta2/química , Fator de Crescimento Transformador beta2/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Especificidade por Substrato
16.
J Biomol NMR ; 74(12): 717-739, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32880802

RESUMO

We have previously reported on the measurement of exact NOEs (eNOEs), which yield a wealth of additional information in comparison to conventional NOEs. We have used these eNOEs in a variety of applications, including calculating high-resolution structures of proteins and RNA molecules. The collection of eNOEs is challenging, however, due to the need to measure a NOESY buildup series consisting of typically four NOESY spectra with varying mixing times in a single measurement session. While the 2D version can be completed in a few days, a fully sampled 3D-NOESY buildup series can take 10 days or more to acquire. This can be both expensive as well as problematic in the case of samples that are not stable over such a long period of time. One potential method to significantly decrease the required measurement time of eNOEs is to use non-uniform sampling (NUS) to decrease the number of points measured in the indirect dimensions. The effect of NUS on the extremely tight distance restraints extracted from eNOEs may be very pronounced. Therefore, we investigated the fidelity of eNOEs measured from three test cases at decreasing NUS densities: the 18.4 kDa protein human Pin1, the 4.1 kDa WW domain of Pin1 (both in 3D), and a 4.6 kDa 14mer RNA UUCG tetraloop (2D). Our results show that NUS imparted negligible error on the eNOE distances derived from good quality data down to 10% sampling for all three cases, but there is a noticeable decrease in the eNOE yield that is dependent upon the underlying sparsity, and thus complexity, of the sample. For Pin1, this transition occurred at roughly 40% while for the WW domain and the UUCG tetraloop it occurred at lower NUS densities of 20% and 10%, respectively. We rationalized these numbers through reconstruction simulations under various conditions. The extent of this loss depends upon the number of scans taken as well as the number of peaks to be reconstructed. Based on these findings, we have created guidelines for choosing an optimal NUS density depending on the number of peaks needed to be reconstructed in the densest region of a 2D or 3D NOESY spectrum.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Simulação por Computador , Humanos , Cinética , Peptidilprolil Isomerase de Interação com NIMA/química , Domínios Proteicos , Fatores de Tempo
17.
Bioorg Med Chem ; 28(11): 115495, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32307260

RESUMO

New series of benzimidazole ring core conjugated with either dithiocarbamate or thiopropyl linkers, hybridized with different secondary amines were synthesized; 5-15 and 22-31; respectively. The new compounds were characterized by different spectroscopic techniques (1H, 13C 1D & 2D NMR, ESI-MS and IR). They were screened for in vitro anticancer activity against breast cancer using MCF7 cell line. The results obtained revealed that compounds 5, 12, 15 and 25 were the most active among the synthesized series exhibiting IC50 < 10 µg/ml against DOX. To characterize targeting breast cancer on molecular level, binding to 15N-labeled Pin1 enzyme was conducted using state-of-the-art 2D NMR binding experiments. Results showed promising binding between compounds 5, 12, and 25 by chemical shift perturbation (peak shifting or peak disappearance). Molecular docking study were quite valuable to explain the binding mode of active derivatives via hydrogen bonding. Additional contact preferences and surface mapping studies stated the similarity pattern between active candidates which may pave the way for more precise anti breast cancer target optimization.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Células MCF-7 , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Relação Estrutura-Atividade
18.
Molecules ; 25(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861908

RESUMO

Pin1 is a peptidyl-prolyl isomerase responsible for isomerizing phosphorylated S/T-P motifs. Pin1 has two domains that each have a distinct ligand binding site, but only its PPIase domain has catalytic activity. Vast evidence supports interdomain allostery of Pin1, with binding of a ligand to its regulatory WW domain impacting activity in the PPIase domain. Many diverse studies have made mutations in Pin1 in order to elucidate interactions that are responsible for ligand binding, isomerase activity, and interdomain allostery. Here, we summarize these mutations and their impact on Pin1's structure and function.


Assuntos
Mutação , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Regulação Alostérica , Animais , Humanos , Isomerismo , Domínios Proteicos , Relação Estrutura-Atividade
19.
Chembiochem ; 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883016

RESUMO

Distance-dependent nuclear Overhauser enhancements (NOEs) are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semiquantitative upper distance bounds, and this discards the wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond timescale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multistate ensembles of proteins up to approximately 150 residues. Here, we briefly revisit eNOE methodology and present two new directions for the use of eNOEs: applications to large proteins and RNA.

20.
Molecules ; 22(7)2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28708092

RESUMO

Although often depicted as rigid structures, proteins are highly dynamic systems, whose motions are essential to their functions. Despite this, it is difficult to investigate protein dynamics due to the rapid timescale at which they sample their conformational space, leading most NMR-determined structures to represent only an averaged snapshot of the dynamic picture. While NMR relaxation measurements can help to determine local dynamics, it is difficult to detect translational or concerted motion, and only recently have significant advances been made to make it possible to acquire a more holistic representation of the dynamics and structural landscapes of proteins. Here, we briefly revisit our most recent progress in the theory and use of exact nuclear Overhauser enhancements (eNOEs) for the calculation of structural ensembles that describe their conformational space. New developments are primarily targeted at increasing the number and improving the quality of extracted eNOE distance restraints, such that the multi-state structure calculation can be applied to proteins of higher molecular weights. We then review the implications of the exact NOE to the protein dynamics and function of cyclophilin A and the WW domain of Pin1, and finally discuss our current research and future directions.


Assuntos
Ciclofilina A/química , Peptidilprolil Isomerase de Interação com NIMA/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sequência de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Movimento (Física) , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA